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ABSTRACT
The urgent need for vehicle electrification and improvement in fuel efficiency has gained in-
creasing attention worldwide. Regarding this concern, the solution of hybrid vehicle systems
has proven its value from academic research and industry applications, where energy manage-
ment plays a key role in taking full advantage of hybrid electric vehicles (HEVs). There are
many well-established energy management approaches, ranging from rules-based strategies to
optimization-based methods, that can provide diverse options to achieve higher fuel economy
performance. However, the research scope for energy management is still expanding with the
development of intelligent transportation systems and the improvement in onboard sensing and
computing resources. Owing to the boom in machine learning, especially deep learning and
deep reinforcement learning (DRL), research on learning-based energy management strategies
(EMSs) is gradually gaining more momentum. They have shown great promise in not only be-
ing capable of dealing with big data, but also in generalizing previously learned rules to new
scenarios without complex manually tunning.

Focusing on learning-based energy management with DRL as the core, this book begins
with an introduction to the background of DRL in HEV energy management. The strengths
and limitations of typical DRL-based EMSs are identified according to the types of state space
and action space in energy management. Accordingly, value-based, policy gradient-based, and
hybrid action space-oriented energy management methods via DRL are discussed, respectively.
Finally, a general online integration scheme for DRL-based EMS is described to bridge the gap
between strategy learning in the simulator and strategy deployment on the vehicle controller.

KEYWORDS
hybrid electric vehicles, learning-based energy management strategies, deep rein-
forcement learning, deep neural networks, optimality, generalization, information
fusion, interpretability, knowledge distillation
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C H A P T E R 1

Introduction
1.1 MOTIVATION
The world is actively promoting the application and development of renewable energy, and con-
stantly speeding up the transformation of the energy system from fossil energy-based to low-
carbon green energy-based. This has considerably contributed to the development and produc-
tion of hybrid electric vehicles (HEVs). As a vehicle electrification technology that is not limited
by battery range and charging infrastructure construction, hybrid technology is also one of the
most commercially successful energy-efficient technologies for vehicles.

With their diverse on-board energy sources and flexible working modes, HEVs are more
helpful to improve the vehicle energy efficiency. For example, under frequent start-stop urban
driving conditions, HEVs can work in pure electric mode to avoid idling emissions; they can
adjust the engine operating point by coordinating the generator set, thus improving the engine
thermal efficiency, etc. For plug-in hybrid electric vehicles (PHEVs), they can ensure a cer-
tain pure electric range, but also rely on engine drive at high-speed and long-distance driving,
eliminating the driver’s mileage anxiety. However, due to the coupled characteristics of multi-
ple energy flows in HEV powertrains, energy management becomes critical for realizing their
energy-saving potential and reducing application costs.

Along with the rapid technical development of new energy vehicles, intelligent trans-
portation systems are also flourishing. Intelligent and connected vehicles have also become an-
other breakthrough in the development of the next generation of vehicles. They are designed
for safety and efficiency, and featured with information sharing, environment awareness, intel-
ligent decision making, and automated collaboration. Simultaneously, the environmental per-
ception information available for vehicle energy-saving control is enriched. However, traditional
control methods are relatively limited in their ability to process and mine multi-source, high-
dimensional sensory data. Therefore, it will be helpful to explore new approaches for energy
management in an intelligent connected environment from two aspects: (1) work on new in-
telligent energy-efficient control methods to explore the potential correlation between data in-
formation involved during vehicle driving and efficient powertrain energy distribution; and (2)
work on how to enable strategies to learn more efficient energy management schemes from data
on their own.

Therefore, with machine learning as the core, especially deep reinforcement learning
(DRL) which has been prominent in intelligent decision-making in recent years, we carry out
research on learning-based energy-saving control strategies and their stable learning methods.
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These works explore the value of intelligent control methods in tapping the energy-saving poten-
tial of HEVs. Hopefully they could provide referenceable algorithmic experiences for relevant
research on intelligent energy-saving control methods for HEVs in network-connected envi-
ronments.

1.2 HEV POWERTRAIN
The on-board energy system of HEVs usually has two or more energy sources. Currently, hy-
brid powertrains mostly use internal combustion engine or fuel cell as the main energy supply
unit, supplemented by auxiliary energy supply or storage units, such as battery [1], super capaci-
tor [2], air compressor [3], hydraulic pump [4], super flywheel [5], etc.The “internal combustion
engine + battery” is the hybrid solution adopted by most HEVs on the market today. Accord-
ing to different power coupling methods, usually the typical hybrid systems can be divided into
three categories: series configuration, parallel configuration, and series-parallel configuration, as
shown in Figure 1.1.

Series HEVs are driven directly by electric motors. The engine power is converted by the
generator into electrical energy, which in turn charges the battery or drives the motor directly.
The significant advantage is that the engine can be decoupled from the driving cycle with a
simple powertrain, making it easier to regulate the operation of engine-generator set. However,
multiple energy conversions can lead to a reduction in powertrain efficiency. Meanwhile, to de-
velop vehicles of this configuration, the selection of each power component needs to be matched
according to the power capabilities, which may lead to an increase in manufacturing costs.

Parallel HEVs can be driven by either the engine or electric motors alone, or by both
together. The electric motor can recover braking energy or surplus engine power. Compared to
the series configuration, this one does not require a generator, and we could utilize a smaller
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engine and motor as its power components, resulting in lower manufacturing costs. However,
its engine operation is not fully decoupled from driving cycles.

The powertrain of series-parallel HEVs is relatively complex. The engine, generator, and
motor can be coupled by gear transmissions [6], planetary gears [7], driveshafts [8], ground [9],
etc.The engine is partially or completely decoupled from the driving cycle. In addition, together
with clutches and brakes, this configuration allows flexible and diverse operating modes, com-
bining the advantages of the other two configurations. In addition, from the global automotive
market, many HEVs launched by Toyota, Honda, and GM are of this configuration, reflecting
its advantages and value in improving the powertrain efficiency.

1.3 LITERATUREREVIEW
Due to the limitation of battery capacity, the energy management strategy (EMS) of hybrid
powertrains needs to coordinate the motor to balance the engine load on the one hand, but also
to balance the state of charge (SoC) of the battery on the other hand, namely charge sustaining
(CS). HEVs can further evolve into plug-in hybrid electric vehicles (PHEVs) by increasing
the battery capacity and adding the charge depleting (CD) mode. Due to the simplicity and
usability of this CD+CS mode, it has been widely used in practical engineering applications for
PHEV energy management as well [10, 11]. Nevertheless, the CD+CS mode still has some
shortcomings. For example, some research cases show that there is still a fuel economy gap of
about 22% compared to the deterministic dynamic planning algorithm (with known operating
conditions) [12], and the long-term CD mode may lead to a reduction of motor efficiency in
driving conditions with high power demand [13]. As a result, many studies have also explored
the blended mode (BM) [14–16], where both the engine and motor are working collaboratively
during the whole trip. However, the tuning of BM strategy needs to be coordinated with the
length of a trip, otherwise its effect may still be inferior to a well-tunedCD+CS strategy [17, 18].
The above is an overview of the basic modes of HEV and PHEV energy management, and the
comparison of each mode is shown in Figure 1.2.

According to recent research, energymanagementmethods can be generally classified into
three categories: rule-based methods, optimization-based methods, and learning-based meth-
ods, as described in the following literature review.

1.3.1 THERULE-BASEDEMS
Rule-based EMSs mainly improve the energy efficiency of the whole vehicle from the following
aspects: (1) start the engine by using electric motor to avoid the engine working in inefficient
operation areas; (2) reduce idle fuel consumption by adopting anti-idling technologies; (3) adjust
the engine operation point by electric motors and generators to improve the engine efficiency;
and (4) recover braking energy by adopting regenerative braking.

Rule-based EMSs can be divided into two categories: deterministic rule-based strate-
gies [19] and fuzzy rule-based strategies [20, 21]. Deterministic rule-based EMSs calculate
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control signals and operating mode demands by pre-defined rules and thresholds. The fuzzy
rule-based EMS incorporates expert knowledge to fuzzify the control rules, which improves the
tunability and robustness of rule-based methods. There are two main approaches to obtain the
control parameter settings in a rule-based strategy. Usually, they can be extracted from the op-
timal strategy under specific driving cycles [19]. They can also be optimized using optimization
algorithms, for example, using hybrid genetic algorithms to find the optimal control parame-
ters [22].

In general, rule-based EMSs are easy to implement and simple to understand, so they
have a wide range of applications in practice. But its application effect is prone to be limited by
specific driving cycles, making it difficult to achieve the optimal fuel economy.

1.3.2 THEOPTIMIZATION-BASEDEMS
Optimization-based energy management usually uses optimization algorithms to calculate op-
timal or suboptimal strategies in the feasible domain, with basic elements including control
system models, optimization objectives, and constraints. Although optimization-based meth-
ods can achieve better fuel economy, there are also some challenges: high complexity of the
algorithm, large computational load, etc., making its practical application relatively more dif-
ficult [23]. This category of methods is also one of the major research topics in hybrid system
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control. Under the simulation environment, there are many good optimization-based methods.
However, the advantages and disadvantages of each method cannot be easily summarized in a
simple way, because their performance can be influenced by many factors such as sampling time,
model accuracy, and parameter definition in the simulation environment, etc.

ClaraMarinaMartinez et al. classified the main optimization-based EMSs into eight cat-
egories according to the types of algorithms, including dynamic programming (DP), equivalent
consumption minimization strategy (ECMS), model predictive control (MPC), derivative-free
algorithms, neural networks, game theory, sliding-mode controller, convex programming and
analytic solutions [23]. Here, we briefly summarize the current status of research on each type of
method according to their degree of optimization, including instantaneous optimization, local
optimization, approximate optimization, and global optimization, as follows.

ECMS is a representative method among instantaneous optimization strategies. Its orig-
inal idea was to convert the electric consumption of HEVs into the equivalent of fuel con-
sumption to solve the optimization problem [24]. Later, it was proved that ECMS is based on
Pontryagin’s Minimum Principle (PMP) [25]. Usually, the ECMS adopts a pre-defined equiv-
alence factor to meet the real-time computing requirements of online applications and unknown
driving cycles with partial sacrifice of fuel economy. However, the PMP-based energy manage-
ment can also obtain an optimal solution that is similar to the global optimum given appropriate
coefficients [26].

Among the local optimization strategies, i.e., optimization within a look-ahead window,
two representative methods are adaptive equivalent consumption minimization strategies (A-
ECMSs) [27–29] and MPC-based EMSs [30–32]. They both utilize some observable or pre-
dictable future driving information in the optimization process.The difference is that the former
adopts this information to find an optimal equivalent factor for the calculation of control actions,
while the latter uses driving profiles within the look-ahead window to pre-plan the optimal en-
ergy distribution scheme. Both of them can perform well in simulation environments, but their
optimization is likely to be affected by the accuracy of future driving information, which is a
common issue encountered in practical applications of energy management and remains a re-
search focus.

For approximate optimization strategies, several typical methods can be classified into
this category, including heuristic methods (such as particle swarm optimization [33], simulated
annealing [34], genetic algorithm [35], etc.), neural networks [36], game theory [37], etc. The
algorithmic differences between such strategies are relatively large. A detailed literature review
of such strategies is available from Clara MarinaMartinez [23], Andreas A. Malikopoulos [38],
and others.

The global optimization strategy specifically refers toDynamic Programming- (DP) based
energy management. DP is a powerful tool for solving Markov Decision Process (MDP) prob-
lems. It can be adopted reliably and extensively for energy management of various HEVs, es-
pecially when the entire trip information is known in advance. Usually, the online application
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of DP methods is limited by two aspects: the premise that the dynamic properties of the en-
vironment is known, and the problem of abrupt increase in calculation amount caused by the
discretization of state and action space. Considering that DP-based EMSs are difficult to be ap-
plied directly to on-board controllers, researchers usually consider them as benchmark strategies
for rule extraction [19], effect comparison [8], etc. On the other hand, by leveraging intelligent
transportation systems and cloud computing, DP-based EMSs can also be integrated with other
methods to improve energy efficiency [12, 39, 40].

1.3.3 THELEARNING-BASEDEMS
The field of machine learning has flourished in the last decade, with many research break-
throughs demonstrating its potential for applications in data mining and complex control prob-
lems. Meanwhile, the application of machine learning in HEV energy management, which
is referred to as learning-based EMSs here, has also been increasing. Although learning-based
EMSs belong to the optimization-based strategies as well, such methods have great potential for
future applications in the intelligent networked transportation environment due to their charac-
teristics such as self-learning capability, adaptability of the algorithm, and excellent multi-source
and high-dimensional data mining capabilities.

Learning-based EMSs mostly belong to near-optimal strategies. According to the role of
machine learning in energy management, these methods can be briefly described as follows.

One of the early applications of machine learning in energy management is to utilize it for
optimization of rule-based strategy parameter, such as the heuristic random search method [33]
and the gradient-based optimization method [21], both of which are offline optimization meth-
ods. Similarly, machine learning algorithms can also be used to directly extract optimal strategies
to replace the rule-based EMSs [15, 41]. Most of these machine learning algorithms are super-
vised learning, which are highly dependent on sample data and require comprehensive training
sets to achieve reliable generalization capabilities.

Machine learning methods also have wide applications in local optimization strate-
gies, e.g., feature extraction of driving cycles [42, 43], prediction of future driving informa-
tion [44, 45], and global driving cycle construction [39, 40]. These applications could facilitate
A-ECMSs and MPC-based EMSs for adaptability enhancement. Both supervised and unsu-
pervised machine learning algorithms are involved in these applications, but mostly are applied
to assist the operation of primary control algorithms. The stability of these methods is more
reliable due to their reliance on classical control methods. However, the extension of their ap-
plication scenarios in complex connected vehicle environments may still be limited, i.e., their
ability to process multi-source high-dimensional vehicle and traffic information still needs fur-
ther research.

In contrast to the aforementioned learning-based EMSs, the strategy training of rein-
forcement learning-based EMSs does not need labeled data, but is guided by control targets.
These algorithms could improve the EMS by directly learning from the state transition data,
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and realize end-to-end control from observation to energy distribution [46, 47]. Such EMSs
could achieve relatively better robustness, because they rely more on the potential association
between state observations and action values to improve strategies than on labeled data [48–50].
Meanwhile, another outstanding advantage of such EMSs is that they can be combined with
deep learning methods, such as deep neural network (DNN) [51], convolutional neural network
(CNN) [52], Structured Control Nets (SCN) [53], etc., to enhance their perception capability
on multi-source high-dimensional data, or scalability for control problems with complex con-
tinuous action outputs.

SUMMARY
In this chapter we briefly discussed some of themain energymanagementmethods and indicated
how learning-based methods begin to gain momentum in HEV energy management.This book
aims to discuss one of the most promising learning-based EMSs, namely deep reinforcement
learning- (DRL) based energy management, and their applications in different HEV energy
management problems. The outline of the book is presented as follows.

Chapter 2 provides some necessary background knowledge of DRL. The reinforcement
learning-based energy management and its basic learning theory is introduced, which also serves
as the foundation of DRL-based EMSs. This chapter also presents different types of state space
and action space in reinforcement learning, along with their applicability in different energy
management problems.

Concerning continuous-state and discrete-action energy management problems, Chap-
ter 3 provides an energy management method based on deep action-value learning. Improve-
ments from the network structure, estimation of target Q-value, and the experience replay are
described for the stable training. This method is evaluated on a series HEV in terms of learning,
optimization, and generalization performance.

For continuous-state and continuous-action energy management problems, Chapter 4
mainly discusses a solution based on policy-gradient learning. To improve the adaptability of
this continuous EMS for PHEVs, an SoC planning method using history trip information is
integrated to guide the strategy learning. It is also compared with the real-time EMSs based on
MPC to examine its optimality.

Regarding energy management problems with multiple discrete actions and continuous
actions, Chapter 5 provides a learning-based method to search optimal EMSs in hybrid action
space. A pre-training stage is also introduced to leverage the empirical knowledge about the
optimal EMS. Besides, the value of terrain information in learning-based EMSs is discussed in
specific scenarios, the fuel economy performance, and the hierarchical decision extraction and
interpretation of the parameterized strategy.

To ensure the compatibility with current mainstream development processes of the vehi-
cle control strategies, Chapter 6 gives an online integration scheme for DRL-based EMSs by
knowledge distillation and strategy reconstruction in Matlab/Simulink.
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Finally, concluding remarks are given in Chapter 7.
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C H A P T E R 2

Background: Deep
Reinforcement Learning

In energy management of HEVs, taking an energy distribution scheme derived from the given
EMS will bring in changes of the vehicle state and driving state. Meanwhile, energy consump-
tion of the powertrain occurs simultaneously with the transition of vehicle states. This instanta-
neous energy (or fuel) consumption and the sum of energy (fuel) it consumes over the future will
provide a criterion for judging the strategy performance.Then, a new energy distribution scheme
should be calculated according to the current vehicle states to accomplish the energy manage-
ment. This described process contains main elements including the interaction of the decision
maker with the controlled object and the environment it belongs to, the policy (or strategy),
states, actions, and costs (or rewards). Because the state transition process of the vehicle shows
a distinct Markovian property [54], we will model and formulate the HEV energy management
problem based on MDP theory. The general modeling part will be described in this chapter,
while the similarities and differences of the modeling process for different energy management
problems will be described in the relevant sections of subsequent chapters.

For control problems modeled as MDP, Monte Carlo methods, DP, and reinforcement
learning are all available to find optimal strategies, and their idea of finding optimal strategies
are grounded in the value function, which is used to describe the magnitude of the potential
value of performing a certain amount of action in a given state [55, 56]. Although classical DP
methods are usually reliable in finding the global optimal control strategy, however, the premise
that all environment information, i.e., the state transfer probability, is known in advance, and
its exponentially increasing computational load severely limit its online application. The Monte
Carlo method, on the other hand, gets rid of the assumption that the global environmental
information is known and solves the optimal strategy only from the empirical data, but its so-
lution efficiency is relatively lower. Reinforcement learning follows a different idea, adopting
the value function estimation idea of Temporal Difference (TD) learning. In this way, the idea
of iterative estimation of the value function in DP is retained, and the characteristics of Monte
Carlo methods that do not require global environmental information are also combined, making
reinforcement learning more suitable for the actual control scenarios [56].

In recent years, DRL, which combines the strengths of both deep learning and reinforce-
ment learning, has gained great momentum. It is often used for end-to-end decision control
in complex control systems, where an agent is trained to autonomously learn the optimal con-
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trol strategy from the raw data environment. DRL-related research has achieved remarkable
results in many fields, such as computer games [57], the Go games [58], robot control [59],
visual navigation [60], autonomous driving [61], etc. Meanwhile, its application cases in HEV
energy management are also gradually increasing, showing the feasibility and potential of DRL
for application in HEV energy management in the future connected vehicle environment.

In this chapter, the background of DRL algorithm and the idea of HEV energy manage-
ment based on DRL is described.

2.1 REINFORCEMENTLEARNING INENERGY
MANAGEMENT

Reinforcement learning is a class of machine learning algorithms designed to solve sequential
decision problems, especially MDP problems. In this section, we will focus on reinforcement
learning-based energymanagement problems to explain theMDPmodel of energymanagement
and its basic learning theory.

The goal of reinforcement learning is to find a control strategy that could achieve max-
imum cumulative rewards over the future by mapping the states to actions, as Equation (2.1)
describes. For HEVs, the controlled object is hybrid powertrain systems. The state s.t/ at mo-
ment t could be represented by powertrain state, driving environment, driving demands, etc.
The energy distribution scheme is the action a.t/ at moment t . The reward r can be evaluated
by real-time evaluation metrics of the energy distribution scheme, such as instantaneous fuel
consumption, SoC deviations, etc. This control strategy is namely the EMS, pi :

��
D arg max

a.t/2A

E

"
N �1X
tD0

r .s.t/; a.t// T s

ˇ̌̌̌
ˇ s.0/ D s0

#
; (2.1)

where �� denotes the optimal EMS, A denotes the action space, Ts denotes the sampling time
(default is 1s in this book), s0 denotes the initial state, and N is the time sequence length of the
finite-step MDP problem.

By means of exploration and feedback mechanisms, the reinforcement learning-based
EMS interacts with the vehicle and its driving environment in order to discover and learn the
optimal energy distribution scheme, enabling the application of past experience to new scenarios.
Figure 2.1 illustrates this interactive learning process, and the main elements of this interaction
are described, respectively, as follows.

(1)TheAgent and theEMS�:The agent is the core of reinforcement learning and acts as
the decision maker. In energy management, it is equivalent to the vehicle controller that controls
the energy distribution in real time. The control program of energy management deployed on
the controller is the EMS � , which is used to map the decision from state s.t/ to action a.t/.
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Figure 2.1: The agent-environment interaction.

(2) The environment: The environment in reinforcement learning represents the con-
trolled system, which is the hybrid powertrain in HEV energy management. When the con-
troller (agent) sends an action signal, the powertrain will respond to this control signal, and the
response can be presented by the instantaneous fuel consumption, change of SoC, etc.

(3) The state space S : The state is a description of the environment the agent is in. The
state contains a series of state vectors s.t/ (s.t/ 2 S; t D 1; 2; : : : ; N ) that represent the charac-
teristics of the vehicle state, road and traffic conditions, driving demand, etc. The state vector
s.t/ should reflect the vehicle state and driving requirement as adequately as possible and be
easy to observe. Given that the driving force is mainly determined by vehicle longitudinal dy-
namics, usually, we could select the velocity v, SOC of the battery, clutch or brake state clutch,
etc. to describe the state of the vehicle itself. The driving demand could be represented by the
desired acceleration a obtained from pedal signal, the calculated driving torque or power de-
mand, etc. The driving cycle information could be obtained from history velocity, such as the
velocity during the past seconds: v�1; v�2; :::v�k . Road slope �slope could naturally describe the
terrain information. Therefore, a state space that contains the aforementioned states could be
expressed as S D fv; SOC; a; clutch; Taxle; Paxle; v�1; v�2; :::v�k; �slopeg. By merging all relevant
state data within a certain time window, we can get the state vector s.t/ D Œv.t/; SOC.t/; a.t/;

clutch.t/; Taxle.t/; Paxle.t/; v�1.t/; v�2.t/; :::v�k.t/; �slope�, s.t/ 2 S .

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01156ED1V01Y202112AAT016&iName=master.img-002.jpg&w=65&h=53


12 2. BACKGROUND:DEEPREINFORCEMENTLEARNING
(4)Theaction spaceA:The action refers to the control action of an agent.The action space

A is the ensemble of all actions, and it contains all possible action vectors a.t/ that determine
the energy distribution of the hybrid powertrain: a.t/ 2 A; t D 1; 2; : : : ; N .

(5)The state transition s ! s0: The response of the controlled object after executing ac-
tion a at the current moment. It will make the environment transfer from the current state s to
the next state s0. This process is known as the state transfer and exhibits Markovian properties.

(6)The reward R: The state transition will generate a reward signal r that evaluates how
good the current strategy is. For energy management, the higher the reward is, the better the
energy distribution scheme is.

Accordingly, the interaction process shown in Figure 2.1 can be further described as fol-
lows: at moment t , the agent makes a decision based on the current state s.t/ and sends an action
command a.t/; then, the environment responds to the action command, undergoes a state shift
s.t/! s.t C 1/, and provides a reward feedback r.t C 1/ D r.s.t/; a.t//; after that, the agent
begins its decision at the next moment t C 1.

On the other hand, Equation (2.1) shows that the key to find the optimal strategy is how
to select an action that could yield a high expected reward return. Thus, in MDP problems, the
action-value function is defined to convey the expected reward return over the future after taking
action a, as Equation (2.2) shows:

Q� .s; a/ D E�

"
N �TX
tD0

r .s.t/; a.t// 
 t

ˇ̌̌̌
ˇ s.0/ D sT ; a.0/ D aT

#
; (2.2)

where sT and aT denote the state and action at moment T , respectively. 
 denotes the discount
rate, determining the present value of future rewards. When gamma D 0, the action value Q is
determined by the instantaneous reward only, making the strategy optimization vulnerable to
local optimality. When gamma D 1, the reward at any moment in the MDP problem is equally
important for the decision, but estimating the action value Q in this case will become quite
difficult due to the diversity of action vectors and long control sequences in energy management.
Referring to some successful applications of DRL [57, 62–65], in this manuscript, the discount
rate is set to gamma D 0:9 to balance estimation efficiency and convergence.

The optimal strategy �� has the highest action value, namely the optimal action value
Q�.s; a/ as follows:

Q� .s; a/ D max
�

Q� .s; a/: (2.3)

If Q�.s; a/ has been obtained, the optimal strategy as shown in Equation (2.1) could be
reformulated as:

��
D arg max

a.t/2A

�
Q� .s.t/; a.t//j s.0/ D s0

�
: (2.4)

Generally, according to Bellman Equation, we could reformulate Equations (2.3) and
(2.4) into multiple single-step decisions to solve the optimal decision process, as depicted by
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Equation (2.5):

Q� .s.t/; a.t// D E

�
r .s.t/; a.t//C max

a.tC1/2A
Q� .s.t C 1/; a.t C 1//

�
: (2.5)

The goal of strategy learning in reinforcement learning is consistent with the solution
of Bellman Equation. Taking the value-based reinforcement learning approach as an example,
the action-value function is iteratively updated along with the agent-environment interaction:
guided by a random actual action value Target, the estimated action value Estimate is updated
iteratively by a given step StepSize until it converges, i.e., the estimation error Target � Estimate
converges to zero, as shown in Equation (2.6):

Estimatenew  Estimateold C StepSize .Target � Estimateold/: (2.6)

However, to update the action value directly by Equation (2.2) requires traversing the en-
tire control sequence again and again, which makes the solving process quite inefficient. There-
fore, in reinforcement learning, the idea of TD update is commonly adopted to accelerate the
learning process of Q.s; a/ estimation, as shown in the following Equation (2.7):

Qnew .s; a/ Qold .s; a/C ˛

��
r C 
 max

a0
Qold

�
s0; a0

��
�Qold .s; a/

�
; (2.7)

where Œ.r C 
maxa0Qold .s0; a0// �Qold .s; a/� is the TD error (ı), Qold .s; a/ represents the
Estimateold, .r C 
maxa0Qold .s0; a0// represents the Target, .s; a/ denotes .s.t/; a.t//, .s0; a0/

denotes .s.t C 1/; a.t C 1//, and r denotes r.s.t/; a.t//.
After solving the Bellman equation by iterative learning, we can finally obtain the optimal

EMS pi� by Equation (2.4).
The above is a classical reinforcement learning theory based on the direct estimation of

action-value function, which is usually known as Q-learning. Many of the DRL methods share
a similar underlying learning philosophy as Q-learning to some extent, but they differ in the
modeling and calculation of action-value function, strategy modeling and update methods, etc.
Thus, based on the aforementioned action value estimation idea, we will introduce some typ-
ical DRL-based energy management methods that apply to different HEV configurations in
subsequent chapters.

2.2 THE STATE SPACEANDACTIONSPACE IN
REINFORCEMENTLEARNING

State and action space are two essential elements in reinforcement learning, and vary with dif-
ferent types of control problems. In this section, we will illustrate some typical state and action
spaces, as well as the curse of dimensionality in MDP problems, by a simplified game, Grid-
World.
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DestinationInfeasible area

Figure 2.2: The state and action spaces in simplified GridWorld.

2.2.1 DISCRETE STATE SPACEANDDISCRETEACTIONSPACE
Figure 2.2a shows the simplified GridWorld. In this gridded flat world, the controlled object is
manipulated by the strategy to move in one of the four possible directions (up/down/left/right),
to go to the adjacent grid. If it enters the infeasible area, it will be punished, while entering the
destination, it will earn some rewards. The goal of the game is to get as many rewards as possible
in a limited time. As the gridded world is bounded and the object could only move from grid
to grid, all possible states of the object could be enumerated as S D fs1; s2; : : : ; s4�5g, which
corresponds to the 4 � 5 grids of the GridWorld. There are only four optional control actions to
move the object, so its action space could be expressed as A D fa1; a2; a3; a4g. Such state/action
spaces that can be represented by enumeration are classified as discrete state/action spaces.

When applying Q-learning in discrete state/action spaces, we could strictly follow the
steps described in Section 2.1 to obtain the optimal strategy. First, calculate the action-value
function Q .s; a/ so that we could get the action value of any possible action under a given state,
as Equation (2.3) shows. Because of the discrete state/action space, the action-value function
could be expressed in a tabular form, i.e., by retrieving the specific state and action values in a
Q-table, the corresponding action value could be obtained. Then, we can select the action that
shows the highest action value as the control output (Equation (2.4)).
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2.2.2 CONTINUOUS STATE SPACEANDCONTINUOUSACTIONSPACE
If we change the manipulation rules slightly into Figure 2.2b, where the controlled object could
move in any direction, � from 0ı to 360ı, the location of the object will not be limited by grids.
In this case, it is difficult to list all sets of possible states and control actions by enumeration,
thus such state/action space is referred to as continuous state/action space. In this continuous
flat world, the state of the control object can be represented by the abscissa value and ordinate
value (x and y), so the state space here is referred to as a two-dimensional continuous state
space. Taking the lower-left corner of the area as the origin, right and up as the positive x and
y direction, respectively, this continuous state space can be written as S D fx; yjx 2 Œ0; 5�; y 2

Œ0; 4�g. Similarly, the continuous action space can be written as A D f� j� 2 Œ0; 360/g.
However, as the state and action cannot be described by enumeration, it is hard to express

the action-value function in a tabular form when applying Q-learning, and the method of Equa-
tion (2.4) cannot be applied directly either. To solve this problem, the continuous state/action
space can be discretized into discrete state/action space, which is similar to the discretization in
the classic DP algorithm. The higher the degree of discretization (the smaller the discrete scale)
is, the more accurate the description of the continuous state/action space will be.

For example, if the continuous plane is discretized by one-tenth of the unit length, we
could approximately consider themotion of this object a transition between grids.Then, the state
space will be enumerated as S D fs1; s2; : : : ; s40�50g. Similarly, we can describe the action space
approximately as A D fa1; a2; a3; : : : ; a36g if it is discretized by 10ı. Accordingly, the action-
value function can still be represented by a .40 � 50/ � 36 action value table, and solved by Q-
learning.

The curse of dimensionality caused by discretization, however, severely limits the appli-
cation of traditional reinforcement learning methods, such as Q-learning, Dyna, etc. [46]. The
curse of dimensionality is a phenomenon used by Bellman in dynamic programming research
to describe the exponential increase in the amount of data caused by increasing dimensionality
in a high-dimensional space, and the associated difficulties in data analysis, organization, and
computation [66]. Although this phenomenon is not obvious in low-dimensional space, Fig-
ure 2.3 can still visually describe it: for a one-dimensional unit interval, when the discretization
increases from 3 to 9 grids, the sampling and computational load only increase by three times;
while when the dimensionality increases to three, the triple increase in discretization level leads
to an exponential increase in the sampling and computational load.

Therefore, when discretization is applied to deal with continuous state/action space in
Equations (2.3) and (2.4), the computational load will increase sharply and the optimization
becomes more and more difficult as the dimensionality or discrete accuracy increases. On the
other hand, excessive reduction of discrete accuracy may also lead to poor optimization.
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Figure 2.3: Illustration of the curse of dimensionality due to discretization.

2.2.3 HYBRIDACTIONSPACE
If the manipulation rules in Figure 2.2b are further changed: while control the moving direction,
the strategy should also select a proper step size l from the set fl1 D 0:5; l2 D 1; l3 D 1:5g. In
this case, the action space will contain both continuous actions and discrete actions, denoted as
A D fl1; �g [ fl2; �g [ fl3; �g, where � 2 Œ0; 360/. Hybrid action space are also widely found in
practical control problems, such as HEV energy management problems that includes clutch or
brake states, or mode switching, etc.

When solving MDP problems with hybrid action space by the aforementioned reinforce-
ment learning method, it is necessary to discretize the part of continuous actions, convert the
hybrid action space into discrete action space, but still, the potential dimensional issue may be
encountered.

2.2.4 STATEANDACTIONSPACE INHEVENERGYMANAGEMENT
HEV energy management belongs to the sequential decision, which can be modeled as MDP
problems. This naturally provides the foundation of applying DRL to formulate an intelligent
EMS. However, due to the variety among different types of HEV powertrain configuration,
MDPmodels of energy management also vary in their dimension and scale of state/action space,
and the type of action space, etc. which is the reason for carrying out related research work in
this book. Some typical cases are as follows.

(1) For series HEVs, as the engine is totally decoupled from the driving cycles, we could
constrain the optimal EMS works following a set of pre-defined optimal engine operation
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points. Thereby, the action space can be categorized as discrete action space. A relatively small
action space also facilitates the effective search of optimal EMS by simple algorithms.

(2) For power-split and series-parallel HEVs, the engine is partially coupled with the
driving cycles, and there is more freedom in the powertrain control. This usually leads to an
increase in action variables and larger action spaces, so strategy learning algorithms that could
search in continuous state/action spaces would be more applicable.

(3) For some coaxial series-parallel HEVs, their working modes are determined by the
clutch connected to the engine, thus, the corresponding action space consists of several contin-
uous actions and a discrete action that controls the clutch. For HEV configurations consisting
of dual planetary gears, their working modes are determined by multiple clutches and brakes,
i.e., the action space contains multiple discrete and continuous variables at the same time. In the
former case, the binary discrete action could be selected simply by taking a continuous output
action as the probability of closing a clutch. In the latter case, however, when multiple dis-
crete actions exist in hybrid action spaces, it would be more beneficial to explore direct strategy
searching approaches.

(4) For PHEVs, due to the wide variation range of SoC, which means a wide feasible state
space, random exploration or monolithic rewards may fail in strategy learning. Therefore, it is
desirable to leverage some bootstrapping strategies to ensure effective exploration in the state
space.

2.3 LITERATUREREVIEWONDEEPREINFORCEMENT
LEARNING

In reinforcement learning, the essential core is that the agent must derive efficient representa-
tions of the environment from high-dimensional sensory inputs and use these to generalize past
experience to new situations [57]. Although classic reinforcement learning has achieved success-
ful applications in many fields, they generally are more suitable for cases with low-dimensional
observable state space where environment features can be easily extracted manually. Their ap-
plication to complex problems, however, is very limited due to the curse of dimensionality [67].

Meanwhile, deep learning, as a class of machine learning methods based on neural net-
works that explores the inherent patterns and representations of data, has excelled in complex
information processing such as image, text, and speech in recent years [68]. Alex Krizhevsky
et al. also point out in their research on computer vision that deep networks trained with large
amounts of raw data as input are instead more likely to learn effective representations than man-
ually extracted features [69].

Therefore, VolodymyrMnih et al. pioneered combining the decision-making ability of re-
inforcement learning with the perceptual ability of deep learning, and proposed deep reinforce-
ment learning for the first time, providing a brand new idea to bridge the divide between multi-
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Figure 2.4: Schematic illustration of the DQN used in Atari games [57].

source high-dimensional perceptual signals and control actions. In Atari games, the agents they
designed directly learn the mapping relationship from the original RGB image to the action-
value function using convolutional neural networks, as shown in Figure 2.4, and achieved a per-
formance that surpassed human players [57, 67]. It is also the first artificial agent that is capable
of learning to excel at a diverse array of challenging tasks, which greatly boosts the development
of artificial intelligence. Instead of the tabular Q-map in Q-learning, deep neural networks are
leveraged in this method to represent the action-value function, namely the Deep Q-network
(DQN), without discretizing the continuous state space and avoiding dimensional curse. Take
the continuous state space S D fx; yjx 2 Œ0; 5�; y 2 Œ0; 4�g described in Section 2.2 as an exam-
ple: if it is discretized as S D fs1; s2; :::; s40�50g, the tabular action-value function needs to be
updated iteratively for each of the 40 � 50 elements. While using the neural network f to rep-
resent the action-value function, on the one hand, the network input dimension only needs to
keep consistent with the dimension of continuous state space, which is more practical for the
environment with multi-source high-dimensional information. Also, the parameter update of
the action-value function Q D f .x; y/ can be performed by gradient descent using batch data,
making the solution efficiency considerably improved.

Similar to Q-learning, the training of DQN is also based on action value estimation, and
the success of DQN also depends to a large extent on the integration of experience replay [57].
Tom Schaul et al. further improved experience replay by assigning priorities to state transition
data by their importance, and organizing the storage and replay of empirical data by priority, so
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as to increase the frequency of more meaningful samples being replayed and improve the effects
of the algorithm [70]. To enable DQN to cope with large-scale learning tasks, Dan Horgan et
al. further extended this method by proposing distributed generation, Preferential selection of
empirical data for independent policy updates [71].

As an action value-based method, Q-learning and DQN are prone to overestimate the
Q-value, degrading the training and performance of the strategy [72, 73]. Hado van Hasselt et
al. adopt two neural networks for the estimation of Q-value, one for the action selection and
the other for action value estimation, to tackle this problem [73]. In some MDP scenarios, the
influence of environmental information on Q-value estimation may outweigh action selection,
in this regard, Ziyu Wang et al. proposed a new DQN structure to separate the state value
estimation and the state-dependent action advantage, which eventually led to a better strategy
evaluation [74].

Usually, to avoid strategy learning from falling into local extremes, the exploration mech-
anism would be introduced to achieve diversity and novelty of state transition data and improve
the learning effect. "-greedy algorithm is a commonly used exploration strategy that contributes
to better training results even in complex environments [57]. Bradly C. Stadie et al. evaluated the
novelty of states by training predictive models, which encouraged strategies to visit new states
more often. Considering the stochastic characteristic of MDP problems and the uncertainty
of current action values, Ian Osband et al. proposed a deep exploration strategy (Bootstrapped
DQN) to improve the algorithm learning performance by referring toThompson sampling [75].
In this research, random sampling of Q-value with a certain distribution is simulated by parallel
learning of multiple action-value functions, followed by the "-greedy exploration [75].

Due to the relatively large (task-specific) DQNs and their extensive training, policy trans-
fer and integration methods in DRL are also evolving to solve complex problems. The policy
distillation method proposed by Andrei A. Rusu et al. aims to extract single-game policy or
consolidate multiple policies into a single policy, and outperforms the previous agents [76].
Similarly, Emilio Parisotto et al. combine imitation learning and knowledge distillation to train
agents, which perform equally well in hybrid tasks and the learning efficiency is improved in
new environments as well [77, 78].

Apart from action value-based DRL, policy gradient-based DRLmethods are also widely
studied. Policy gradient-based DRL directly represents the strategy as a parametrized represen-
tation, such as neural networks, and searches the optimal strategy by gradient descent. Thus,
similar to DQN, policy gradient-based methods can search the optimal policy in continuous
action space directly without discretization.

The policy gradient approach can be generally classified into stochastic and deterministic
policy. The stochastic one outputs the probability distribution of the action, while the latter
directly outputs the deterministic action value [79, 80]. Compared with the stochastic policy,
deterministic policies are slightly weaker in action space exploration, but the policy is improved
directly in the gradient direction of increasing the action value, boosting the learning efficiency;
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however, the deterministic policy gradient approach can be considered as a special case where
the variance of the stochastic policy converges to zero [80].

Among stochastic policy methods, John Schulman et al. proposed the Trust Region Policy
Optimization (TRPO) method, which utilizes neural networks to model the stochastic policy,
and bound its parameter updates to a trust region to ensure monotonic improvement [81]. Al-
though TRPO shows good generality, its data utilization efficiency is relatively low, and Open
AI further proposed the Proximal Policy Optimization (PPO) method, which proposes two
algorithm implementation schemes, clipped surrogate objective and adaptive KL penalty coef-
ficient, respectively, with more concise process and better performance [63].

Among deterministic policy methods, Timothy P. Lillicrap et al. proposed the deep
deterministic policy gradient (DDPG) by combing Actor-Critic architecture and the idea of
DQN [62]. In DDPG, the off-policy update is adopted and it performs quite well and stably in
many complex environments without fine-tunning. To further improve the data utilization effi-
ciency, DeepMind proposes a DDPGmethod that can set up a configurable number of strategy
updates, which effectively accelerates the strategy learning process by appropriately increasing
the number of strategy updates during each agent-environment interaction [82]. Mel Vecerik et
al. efficiently solved the MDP problem with sparse rewards by combining expert demonstration
data samples in the DDPG method [83].

In addition, considering that solving MDP problems using DRL requires a large number
of iterative learning, especially when high-dimensional information inputs such as images are
involved,GPUs are usually required for acceleration, so asynchronous settings have been increas-
ingly applied to diverse DRL algorithms. By learning asynchronously and in parallel in multiple
environments, this allows us to discard the need for memory space for sample databases in off-
policy training. With asynchronous measures, strategies trained on multi-core CPUs alone can
also meet or exceed the performance of those trained on GPUs. Currently, most poplar DRL
algorithms can work well in an asynchronous learning way, such as asynchronous DQN [84],
asynchronous Actor-Critic [84], asynchronous PPO [85], etc. In general, parallel learning for
asynchronous methods is also available in two different ways as follows. (1) Learn the policy
gradient or the gradient of the action-value function in parallel, then complete the global pol-
icy update by asynchronous neural network update methods [84]. (2) Generate state transition
data via agent-environment interactions in multiple environments in a distributed manner, then
update the global policy with reasonable experience replay methods [71].

Based on the above two types of DRL algorithms, researchers have also proposed many
improvements for various decision task types and scales, such as hierarchical reinforcement
learning [86], meta reinforcement learning [87], transfer learning-enabled reinforcement learn-
ing [88], multi-agent reinforcement learning [89], etc. Meanwhile, with the development of
DRL, research on their applications in different fields has been increasing as well. In robot
control, Jemin Hwangbo et al. trained a control strategy for legged robots using the TRPO
algorithm and achieved top-quality control effects: as robots dynamics are required in agent-
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environment interaction, to accelerate the training process, they trained an actuator network that
models complex actuator/software dynamics in advance to avoid training with real robots, and
used it for strategy training [59]. OpenAI constructed a strategy network combining long short-
term memory networks and trained it by PPO and generalized advantage estimation, which for
the first time defeated a human professional in Dota 2 game which features long time horizons,
partially observed state, and high-dimensional action and observation spaces [90]. Deep rein-
forcement learning is also widely used in the energy field, for example, in heating, ventilation,
air conditioning and domestic water supply systems, new energy vehicles and HEVs, and dis-
tributed generation and electrical storage, where such methods have been extensively researched
and applied [46].
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C H A P T E R 3

Learning of EMSs in
Continuous State

Space–Discrete Action Space
When applying Q-learning or DP for energy management, their solving efficiency may be lim-
ited by the premise of state space discretization. For data-driven, end-to-end learning-based
EMSs, we desire not only to reduce their reliance on empirical parameter tuning, but also a
higher requirement for its data mining capability, i.e., the energy-saving control schemes should
be learned quickly frommultidimensional environmental information.TheDQNmethod, as an
early breakthrough in DRL, combines deep learning with Q-learning to construct action-value
functions and achieve continuity of state space while solving MDP problems, which dramati-
cally expands the application of reinforcement learning in complex environments. On the other
hand, DQN directly traverses and searches the entire action space to find the maximum ac-
tion value when making decisions, such a strategy enables a fairly concise and efficient learning
algorithm in discrete action spaces. Therefore, to address energy management problems with
continuous state—discrete action spaces, this chapter describes an energy management method
based on deep Q-learning, and further conduct research on its learning stability, optimization,
and adaptability on diverse driving cycles.

3.1 ENERGYCONSUMPTIONMODELOFA SERIES
HYBRIDELECTRICVEHICLE

In this chapter, we take a series-HEV (SHEV) with a wheelbase of 2.65 m as the research
case (Figure 3.1), whose parameters are provided in Table 3.1. The vehicle is impelled by two
identical electric propulsion systems; two power sources are equipped onboard: the battery pack
and the auxiliary power unit that consists of the engine and generator. Since the main focus here
is energy management, it is assumed that drive forces between two axles are evenly distributed.

In DRL-based energy management, the energy consumption model of this SHEV should
not only quickly provide accurate real-time energy consumption assessment, but also act as an
environment for the interactive learning process shown in Figure 2.1, simulating state transitions
of the vehicle powertrain in real time. Therefore, we will establish the power request model of
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1. Integrated front electric powertrain

2. Integrated rear electric powertrain

Mechanical path

Electrical path

Inverter

Motor Motor 12
Engine

Charger Battery pack

Generator

Figure 3.1: Structure of the SHEV configuration.

Table 3.1: General parameters of the SHEV

Vehicle

Curb weight
Front area

Rolling radius

3500 kg
3.9 m2

5.857
0.447 m

Engine
Maximum power/speed
Maximum torque/speed

62 kW/3500 rpm
227 Nm/1900 rpm

Generator
Rated/maximum speed
Rated/maximum torque

2400/4000 rpm
118/277 Nm

Front/rear motor
Rated/maximum speed
Rated/maximum torque

2800/7200 rpm
170/320 Nm

Battery pack
Capacity
Voltage

25 Ah  
347.8 V

the SHEV, APU modeling, battery modeling, and motor modeling, respectively, to complete
the control-oriented energy consumption model as follows.

(1) Power request model of the SHEV
Energy management mainly deals with the power allocation, so the propelled power be-

comes crucial. The vehicle longitudinal dynamics is adopted to calculate the driver’s request
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powerPreq by the force balance equation (Equation (3.1)), where driving resistance of this SHEV
mainly consists of four parts: inertial force Fj , rolling resistance Ff , resistance due to road slope
Fi , and aerodynamic drag Fw : 8̂̂̂̂

ˆ̂̂<̂
ˆ̂̂̂̂̂:

Preq D Freqv

Freq D Fj C Ff C Fi C Fw

Fj D maacc

Ff D mgf cos �road

Fi D mg sin �road

Fw D CDAfrontv
2=21:15;

(3.1)

where Freq denotes the request driving force, m denotes the curb weight (kg), aacc denotes the
acceleration (m/s2), �road denotes road slope which is not considered in this chapter, CD denotes
aerodynamic coefficient (0.65), Afront denotes the fronted area of vehicle (m2), v denotes the
velocity (m/s), f denotes the rolling coefficient, and g denotes the acceleration of gravity.

To guarantee the drivability, energy management needs to coordinate the power output
of the battery pack and the APU while satisfying Preq:

Preq D .Pbatt � PAPU/ .�inv�mot/
sgn.Preq/; (3.2)

wherePbatt denotes terminal power (discharge/charge) of battery,PAPU denotes the output power
of generator, �inv denotes the efficiency of inverter, and �mot denotes the efficiency of motors;
assume that regenerative braking is fully adopted.

(2) APUmodeling
Assuming the APU can respond quickly when receiving control signals, a quasi-static

fuel and electricity consumption model are built by efficiency maps (Figure 3.2). The torque and
speed transfer between the engine (Teng, Weng) and generator (Tgen, Wgen) are described by the
following torque balance equation:

Tgen D Teng ; Wgen D Weng: (3.3)

Terminal power of the APU (PAPU, W) and fuel consumption rate of engine ( Pmfuel, kg/s)
are: 8<: PAPU D TgenWgen�gen

Peng D TengWeng

Pmfuel D Peng=
�
D�eng

�
;

(3.4)

where �eng and �gen denote the efficiency of generator and engine and D denotes the gasoline
lower heating value (4:25 � 107 J/kg).

On the other hand, considering the APU is decoupled with driving cycles, an efficient
operation trajectory is predefined to ensure its working efficiency as shown in Figure 3.2a. In
practice, given the request engine power Peng, the controller will obtain corresponding engine
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(a) Efficiency map of the engine
for fuel consumption

(b) Efficiency map of the generator
for electricity consumption
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Figure 3.2: Efficiency map of the APU.

torque and speed on this trajectory bymapping: ŒTeng; Weng� D find.Pend/.Meanwhile, the engine
torque and speed must satisfy the boundary constraints as follows:

T min
eng � Teng � T max

eng ; W min
eng � Weng � W max

eng : (3.5)

(3)Motor modeling
Since we mainly focus on the energy flow of the powertrain, a quasi-static electricity con-

sumption model is developed for the drive motor using efficiency maps obtained from bench
tests as well. The relationship between the total power of drive motors and the driving power
request is shown in Equation (3.6):

Pmot D Preq=�
sgn.P _req/
mot ; (3.6)

where the motor efficiency �mot is obtained from the efficiency map.

(4) Battery modeling
The equivalent circuit model, consisting of internal resistance and open-circuit voltage

(OCV) as Figure 3.3 shows, is adopted for battery package modeling. Because the equivalent
circuit model has been adopted in massive research of vehicle energy management based on both
optimization algorithms [45, 91–93] and learningmethods [41, 94–96], this model is considered
to be sufficient for our current research. However, when reliable battery test data is accessible,
the DRL methods can handle more sophisticated battery models as long as reasonable SoC
values could be updated.

The battery power and SoC are derived according to the voltage balance and power balance
as follows:

Pbatt D Uoc .SoC/ Ibatt � I 2
battR .SoC/ (3.7)
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Figure 3.3: Basic parameters for the battery model.

PSoC D �Ibatt=Qbatt; (3.8)

where Uoc.SoC/ denotes the OCV of battery pack, Ibatt denotes the battery current, R.SoC/

denotes the internal resistance, and Qbatt denotes the battery capacity.

3.2 ENERGYMANAGEMENTBASEDONDEEP
Q-LEARNINGMETHOD

3.2.1 DISCRETEACTIONSPACE INENERGYMANAGEMENT
In this section, a charge sustaining (CS) strategy is considered in energy management as an
example to demonstrate the DQN-based EMS, i.e., the driving energy comes from engine fuel
consumption, while the battery is mainly used to compensate or absorb the transient energy
changes.

The formulation of energy management is consistent with the general modeling approach
in Section 2.1, including the agent andEMS� , optimization goal of finding the optimal strategy
that achieves the maximum expected reward return, as shown in Equation (2.4). The SHEV
model described in the last section, denoted by F , represents the environment that the EMS
interacts with. The environment-agent interaction is as follows:�

Œs0; r� D F .s; aja � �/

s D s0:
(3.9)

The definition of reward function r is closely related to the goal of energy management.
To consider the fuel economy and the SoC charge sustaining constraints SoC.tf / � SoC.t0/,
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the reward function is defined as Equation (3.10):�

r D r .s; a/ D � tanh
�
� Pmfuel C ' j�SoCCS j

�
�SoCcs D SoC � SoCsust;

(3.10)

where SoCsust denotes the expected CS level, ' denotes factor of SoC deviation and � denotes
factor of fuel consumption rate. To punish frequent engine start/stop, a penalty is imposed to
the reward with a constant penalty factor � (a positive real number) whenever the engine starts:
r D r � �.

According to the SHEV model, we select the following features as the state variables:
SoC, engine power Peng, current velocity v, the desired acceleration of the driver acc, the de-
viation between current SoC and the CS level �SoCCS . Then, we can write the state space as
Equation (3.11). Each dimension of state in this five-dimensional state space S is a continuous
variable, and thus belongs to the continuous state space. Solving this MDP problem by dis-
cretization may lead to an excessive computational load, and relative studies also point out the
weaknesses of using discrete methods like DP [97] or Q-learning [98] in energy-saving con-
trol of vehicles. Therefore, based on the well-demonstrated DQN algorithm [57], this problem
could be addressed by using neural networks to construct action-value function Q.s; a/, i.e., re-
place tabular mapping with parameterized function mapping to avoid dimensional catastrophe
problem:8̂<̂

:
S D fSoC; Peng; v; acc; �SoCCS jSoC 2 Œ0; 1�; Peng 2 ŒP min

eng ; P max
eng �;

v 2 Œ0; vmax�; acc 2 Œaccmin; accmax�; �SoCCS 2 Œ�1; 1�g

s D
�
SoC .t/ ; Peng .t/ ; v .t/ ; acc .t/

�
; s 2 S:

(3.11)

Because the power demand is determined by the driver or driving cycles, the powertrain
state can be uniquely determined by giving the APU output power, i.e., APU output power is the
control action a for this energy management problem. Considering there is a predefined efficient
working trajectory of the engine and the continuous operation of actual engine systems, we could
take �Peng , the increment or decrement value of Peng, as the control action. The discrete action
space can be expressed as Equation (3.12), where Stop means the engine will be shut off:8̂<̂

: A D

(
a1 D 10 kW; a2 D 5 kW; a3 D 1 kW; a4 D 0:4 kW;

a5 D 0 kW; a6 D �1 kW; a7 D �5 kW; a8 D Stop

)
a 2 A:

(3.12)

3.2.2 LEARNINGTHEORYOFDQN-BASEDEMSs
Deep learning is the key to the development of DRL, but also the key to the construction of
continuous action-value function in this book. The tutorial of Stanford [99] provides detailed
background knowledge of feedforward multi-layer neural network as a reference. On the basis
of DNNs, the DQN-based energy management method is introduced as follows.
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Figure 3.4: The evolution from Q-learning to DQN.

Deep Q-learning, as a classical DRL algorithm, also employs action-value function esti-
mation as the basis for action selection, but it introduces deep learning to replace the previous
tabular expression, avoiding the discretization of continuous state space [57, 67]. The evolution
from Q-learning to DQN is shown in Figure 3.4.

In this chapter, DNN is adopted to construct DQN as a mapping function from state-
action to action value of energy management. Furthermore, if there is a need to deal with more
complex driving environment information in energy management, such as on-board vision in-
formation, CNNs can also be used for DQNs, as shown in Figure 2.4. In the constructed DQN,
the number of neurons in the input layer is 5, which is consistent with the dimensionality of the
state space S . There are three fully connected hidden layers with the rectified linear unit (ReLU)
as activation functions. The number of neurons in the output layer is 8, which is consistent with
the action spaceA dimensions, and linear function f .x/ D x is chosen as the activation function.

Denoting all parameters in DQN as �Q, the action-value function of energy management
can be expressed as Q.s; aj�Q/, and the corresponding EMS will be � D arg maxaQ.s; aj�Q/.

With the well-defined state space S , action space A, and reward r , the action-value func-
tion can be calculated by iterative Equation (2.7). However, in contrast to the update by direct
value replacement in Equation (2.7), the parameter set �Q of deep Q-value function is updated
by gradient descent in order to achieve a gradual convergence of the DQN output values with
the actual action value estimates. Thus, the TD error can be defined as the loss function LQ for
DQN training, as shown in the following equation:

LQ.�Q/ D

��
r C 
 max

a0
Q.s0; a0

j�Q/

�
�Q.s; aj�Q/

�2

: (3.13)
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Based on gradient back propagation, the gradient of LQ with respect to DQN parameters

can be obtained by Equation (3.14):

r�QLQ.�Q/D 2
��

r C 
 max
a0

Q.s0; a0
j�Q/

�
�Q.s; aj�Q/

�
r�QQ.s; aj�Q/: (3.14)

Then, with r�QLQ, the DQN can be updated by Equation (3.15). ADAM algorithm is
adopted for adjustment of learning rate ˛l with default parameter settings [100]:

�Q
D �Q

C ˛lr�QLQ.�Q/: (3.15)

The above is the learning theory of DQN-based EMS. Different from the regular super-
vised learning, the training of DRL is not only to minimize the loss function, but also to observe
whether the new strategy can obtain higher cumulative reward return, so as to control the train-
ing process comprehensively. Theoretically, with all the following conditions satisfied, we can
consider the training to be converged. (1) The action space is reasonably chosen. (2) The reward
r can reasonably evaluate the effect of commanded actions. (3) The cumulative reward return
continuously increases and gradually stabilizes during training. (4) There are no large fluctua-
tions in loss values. At this point, the DQN can be used as a mapping from the vehicle state to
the action value of energy management, then the corresponding EMS � can be obtained.

3.2.3 TRAININGOFDQN-BASEDEMSs
Section 3.2.2 introduces the learning theory of EMSs based on DQN, which is basically still
supervised training, but as a temporal control problem, the training samples and labeled data
need to be obtained during agent-environment interaction. Therefore, this section will describe
the training method of DQN-based EMSs.

According to Equation (3.14), the gradient computation requires data including the cur-
rent state s, current action a, reward r after taking action a, and the next state s0, which together
make up the entire data involved in a state transition. Usually, they are stored as an experience
in the form of a tuple, e D .s; a; s0; r/. In practice, however, if online updates are applied, i.e., a
DQN update is performed every time an experience tuple is obtained, but it is likely to lead to
training failure. This is because in temporal control problems, not only does the strong correla-
tion between successive state transfer data may lead to inefficient learning, but the approach also
leads to a poor feedback pattern in training: the current network parameters directly determine
the experience data used for the next parameter update [57].

To avoid updating DQN exclusively from the latest experiences, experience replay is in-
corporated in the training of DQN-based EMS [57, 101]. The temporal experience samples
e are stored by a circular queue into an experience pool D (sample capacity size D 104). One
update of DQN will require sampling a minibatch (size of 32) of experience samples from D,



3.3. IMPROVEMENTS FOR STABLELEARNING INDISCRETEACTION SPACE 31
.s; a; s0; r/ � U.D/, then calculate update gradient of DQN by Equation (3.16):

r�QLQ.�Q/ D E.s;a;s0;r/�U.D/

�
2

�
r C 
 max

a0
Q.s0; a0

j�Q/ �Q.s; aj�Q/

�
r�QQ.s; aj�Q/

�
:

(3.16)
With experience replay, not only can DQN updates be synchronized with the agent-

environment interaction, but also the correlation between the experiences used for updates is
weakened, making it possible to construct action value mappings with deep learning. Mean-
while, experience replay also allows experience samples to be learned repeatedly, which indirectly
improves the efficiency of data utilization for strategy learning.

On the other hand, when constructing a DQN, the network parameters need to be ini-
tialized first. To keep the input and output variance of each layer of the network as consistent as
possible and to ensure the transferability of network information, the Xavier initialization [102]
is used here. However, the EMS corresponding to the initialized DQN is merely a randomly
generated strategy, and the experience data generated by it is obviously inadequate for strategy
learning. Therefore, it is necessary to introduce exploration policies in reinforcement learning.
Here, "-greedy exploration is adopted. A random process R, which will generate random ac-
tions when called, is defined first. Then, explore the action space with exploration probability ",
i.e., randomly selecting actions a D R.s/, while selecting actions with probability 1 � " utilizing
the greedy strategy of maximizing the action value (a D arg maxaQ.s; aj�Q/). The exploration
probability " decreases gradually as strategy training proceeds.

In summary, the training process of DQN-based EMSs can be depicted in general by
Figure 3.5, where the DQN is continuously updated with the agent-environment interaction,
and the agent (EMS) is always aligned with the updated DQN to iteratively learn the optimal
energy management strategy. When training is completed, the latest parameter set �Q of the
DQN is saved and we will get the learned EMS � D arg maxaQ.s; aj�Q/.

3.3 IMPROVEMENTS FOR STABLELEARNING IN
DISCRETEACTIONSPACE

Although deep Q-learning provides an effective approach for solving energy management prob-
lems with continuous sate space—discrete action space, its learning stability is still quite sensi-
tive to the tuning of parameters, training data, and reward definition, due to the complexity of
the temporal control problem, the trial-and-error search mechanism, and the highly nonconvex
characteristics of DNN itself. Therefore, according to some successful research results in Deep
Q-learning, this section will introduce how to construct a stable training method for such en-
ergy management methods from three aspects, including the optimization of DQN structure,
the improvement in action value estimation, and the enhancement of data efficiency, respec-
tively. For the sake of clarity, the DQN described in Section 3.2 is referred to as the original
DQN in later sections.
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Figure 3.5: The training of DQN-based EMSs.

3.3.1 IMPROVEMENT INDQNSTRUCTURE
The reward function is the key to guiding the learning of action-value function. For energy man-
agement, an efficient energy distribution strategy can be simultaneously influenced by both the
driving conditions and the energy distribution scheme. Good fuel economy (or higher cumu-
lative rewards) can be obtained either because the vehicle is in good driving conditions with
power components working efficiently, or because an efficient energy allocation strategy is im-
plemented. In Section 3.2, only the final action value Q.s; a/ is considered, without distinguish-
ing between the state value V.s/ of the state the vehicle is in when making a decision, and the
additional value obtained by performing the chosen action, i.e., the advantage A.s; a/ resulting
from performing a certain action.

To further clarify the relationship between Q.s; a/, V.s/, and A.s; a/, their definitions can
be summarized as shown in Equation (3.17) [81]:

https://www.morganclaypool.com/action/showImage?doi=10.2200/S01156ED1V01Y202112AAT016&iName=master.img-129.jpg&w=130&h=102
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Figure 3.6: Schematic of the dueling DQN architecture for energy management.

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

Q.s.t/; a.t// D Es.tC1/;a.tC1/;:::

"
T �tP
lD0

r.s.t C l/; a.t C l//
 l

#
V.s.t// D Ea.t/;s.tC1/;:::

"
T �tP
lD0

r.s.t C l/; a.t C l//
 l

#
A.s.t/; a.t// D Q.s.t/; a.t// � V.s.t//:

(3.17)

Drawing on the dueling architecture, the DQN described in Section 3.2 can be separated
into two streams. As described in Figure 3.6, one stream is the state value function V.sj�; ˇ/

that is independent of the action variables, and the other is the action variables related to the
action advantage A.s; aj�; ˛/. Then, we can get:

Q.s; aj�; ˛; ˇ/ D V.sj�; ˇ/C A.s; aj�; ˛/; (3.18)

where � denotes all shared parameters, ˛ denotes parameters specific to action advantages, and
ˇ denotes the parametersspecific to value function.

By structurally separating the value generated by states from the value generated by actions
in the network, it is beneficial to allow the learning system to distinguish whether the high
reward (or low fuel consumption) is generated by better driving conditions or benefits from a
relatively efficient control strategy. This means that the potential impact of control actions on
energy management can be tapped more precisely.

However, given an output Q.s; a/ of the new DQN, the corresponding V.s/ and A.s; a/

cannot be uniquely reduced according to Equation (3.18), that is, the action-value function
obtained by this equation is less discriminative. For example, adding and subtracting a constant
to V.s/ and A.s; a/, respectively, yields the same Q.s; a/ as the original, but conversely, given
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Q.s; a/ it is impossible to uniquely determine V.s/ and A.s; a/. If Equation (3.18) is directly
applied to learning of DQN-based energy management, the weak discriminative trait will lead
to poor performance in strategy training. To tackle this problem, and to prevent the failure of
V.s/ during training (e.g., DQN training results in Q.s; aj�; ˛; ˇ/ � A.s; aj�; ˛/), the state-
dependent action advantage can be set to have zero advantage at the chosen action, as shown in
Equation (3.19):

Q.s; aj�; ˛; ˇ/ D V.sj�; ˇ/C

�
A.s; aj�; ˛/ �max

a0
A.s; a0

j�; ˛/

�
; (3.19)

where, for greedy strategy a� D arg maxa0Q.s; a0j�; ˛; ˇ/ D arg maxa0A.s; a0j�; ˛/, we can get
Q.s; a�j�; ˛; ˇ/ D V.sj�; ˇ/.

On the other hand, this zero-setting method will bring additional instability into the net-
work training. With the change of driving conditions, the optimal energy distribution schemes
will change continuously, and each branch of the action advantage needs to be updated quickly
to adapt to the change of optimal action advantage. For this reason, the advantage function
A.s; aj�; ˛/ can be set to zero at the average action advantage, instead of the chosen action.
Since the action space dimension is 8, the corresponding DQN output will be calculated as
follows:

Q.s; aj�; ˛; ˇ/ D V.sj�; ˇ/C

"
A.s; aj�; ˛/ �

1

8

X
a0

A.s; a0
j�; ˛/

#
: (3.20)

In this way, the update of the advantage branches only needs to be consistent with the rate
at which the mean advantage changes, allowing for improved stability in DQN training. Also,
Equation (3.20) is only part of the forward propagation of DQN without additional computa-
tion. Because the input and output of the improved network are exactly the same as the original
DQN, it does not affect the training process of the aforementioned DQN-based EMS.

3.3.2 IMPROVEMENT INESTIMATIONOFTARGETQ-VALUE
As described in Sections 2.1 and 3.2, the key to guide the DQN update is to compute the actual
action value and thus obtain the loss function for DQN training. In the original DQN, the
actual action value Target is calculated by both the reward and DQN, and the estimated action
value Estimate is calculated by the DQN alone. Looking at this calculation process, the current
network parameters are still highly relevant for the calculation of the loss function for the next
update. In other words, while the DQN weights are continuously updated, the optimization
objectives are also changed, and the historical policy acquisition may get quickly overwritten by
new updates, leading to deviations in the neural network training. This is very detrimental to
the training of DNNs.

Therefore, in order to take into account the strategies learned in historical training phases
and to attenuate the instability of strategy learning, a newDNN, called T-DQN (Target DQN),
is introduced here in addition to the original DQN.The original DQN network will be referred
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Figure 3.7: The dataflow graph of DQNs with T-DQN.

to as E-DQN (Evaluation DQN), and the T-DQN and E-DQN share the same network struc-
ture and initial parameters.

The loss function is redefined as follows with a more stable Target. Different from the old
loss function (Equation (3.13)), the actual action value is calculated by reward and the T-DQN,
instead of the E-DQN:(

Target D r C 
 max
a0

Q.s0; a0j�T �DQN/

LQ.�E�DQN/ D E.s;a;s0;r/�U.D/

�
Target �Q.s; aj�E�DQN/

�2
;

(3.21)

where �E�DQN and �T �DQN denote the parameters of E-DQN and T-DQN, respectively.
Following the computation of loss function, the gradient backpropagation is still per-

formed through the E-DQN, while the T-DQN parameters slowly follow the continuously
updated E-DQN at a slower rate � (� � 1), as in Equation (3.22), or replicate the network
parameters of E-DQN at a lower frequency, �T �DQN D �E�DQN :

�T �DQN
D ��E�DQN

C .1 � �/�T �DQN : (3.22)

The dataflow graph of DQNs with T-DQN is shown in Figure 3.7.
On the other hand, because of the greedy strategy in action selection with T-DQN, the

update of E-DQN will follow the Target with maximum TD error, which is likely to lead to
an overestimation of action value and thus affects the learning effect. Therefore, with two sets
of DQNs, the action selection and action value estimation parts of the Target calculation are
further decoupled here: the action selection is implemented based on E-DQN, while the current
greedy strategy is evaluated based onT-DQN,which is known as the doubleDQNmethod [73].
Therefore, the Target in Equation (3.21) can be further formulated into Equation (3.23), and
calculating loss function with this Target will improve the issue of Q-value overestimation:

Target D r C 
Q.s0; max
a0

.s0; a0
j�E�DQN/j�T �DQN/: (3.23)
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3.3.3 IMPROVEMENT INEXPERIENCEREPLAY
In Section 3.2.3, the experience replay method samples past experiences by uniform random
sampling, and does not take into account the differences of these experiences. In practice, how-
ever, there is a portion of sample data in the experience pool whose state transition and reward
feedback would be more valuable and meaningful for strategy learning. For example, with the
same driving cycles, the state transition data e D .s; a; s0; r/ obtained after performing a more
efficient energy allocation scheme will be more beneficial to the stable and efficient EMS learn-
ing compared to data obtained from an inefficient scheme, i.e., it would be more valuable to
guide the learning of DQN-based EMS toward direction with higher returns.

According to prioritized experience replay presented by DeepMind [70], this section will
introduce how to implement this method in DQN-based EMSs. Prioritized experience replay
focuses on how to define the criteria for evaluating the importance of sample data. The extent
to which it can improve on strategy learning is the most desirable metric for a sample, but such
a metric cannot be known precisely in advance. Another reasonable surrogate is the TD error
of experiences, which reflects how surprising the experience is and the extent to which it can
influence the magnitude of the strategy update. Meanwhile, we could easily obtain the TD
error from the loss function, so it is quite appropriate to use this metric as a measure of sample
importance and sampling priority. The TD error ı of e D .s; a; s0; r/ in the improved DQN is
as follows:

ı D

�
r C 
Q.s0; max

a0
.s0; a0

j�E�DQN/j�T �DQN/

�
�Q.s; aj�E�DQN/: (3.24)

Contrary to uniform random sampling, greedy sampling replays experiences with larger
absolute value of TD error from the experience pool for training. However, reward spikes in
energy management can lead to increased TD error noise, and greedy sampling can easily in-
troduce more errors in the training. In addition, greedy sampling can lead to experiences with
small TD errors not being replayed long after they are deposited into the experience pool, but
only a small portion of the experiences with high TD errors will be preferred for training. This
is likely to cause a slow decline in training error, while the reduced sample diversity may lead to
overfitting of the strategy training as well.

Stochastic prioritized sampling is a replay method interpolating between greedy sampling
and random uniform sampling, which can effectively alleviate the issues associated with greedy
sampling.This sampling method ensures that the probability of an experience e being sampled is
monotonic with respect to its priority of e, while ensuring that even experiences with the lowest
priority have a chance to be replayed [71]. Specifically, the sampling probability Pi of the state
transition experience ei is defined as follows:

Pi D
p�

iP
k p�

k

; (3.25)
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Figure 3.8: Illustration of sampling from the sum-tree.

where the priority of experience ei is pi D jıi j C " (" is a small positive constant to avoid zero
sampling probability), the exponent � determines how much prioritization is adopted, with
� D 0 corresponding to the uniform case. In practice, the implementation requires TD error
clipping to reduce the impact of extreme values on the robustness of the algorithm.

Considering the large capacity of the experience pool, a “sum-tree” data structure is
adopted by DeepMind to store the priority sequence with the corresponding experiences, which
ensures that the experience pool can be efficiently updated and sampled from. Figure 3.8 illus-
trates the prioritized sampling process with the “sum-tree.” The computational time complexity
of finding the highest priority experience sample is O.1/, and allowing O.log N / updates and
sampling.

The priority pi of the experience is stored in the leaf node in the sum-tree. The value of
each internal node is the sum of its child nodes, and the parent node contains the sum over all
priorities, ptotal. To sample a minibatch of size k, the range Œ0; ptotal� is divided into k ranges
equally. Next, a value hi is uniformly sampled from each range. Finally, experiences ei corre-
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Algorithm 3.1Retrieve experience samples from the sum-tree

The initial value of N is the order number of the parent node in the sum-tree;
h is the random number sampled from each range;
leaf_node is the leaf node;
N:left_child and N:right_child represent the left child node and right child node, respec-
tively;
N:left_child:value denotes the value of node N .

1: def retrieve(N; h):
2: if N is a leaf node leaf_node then
3: return N

4: end if
5: if h � N:left_child:value then
6: return retrieve(N:left_child; h)
7: else
8: return retrieve(N:right_child; h �N:left_child:value)
9: end if

sponding to hi (i D 1; 2; :::; k) are retrieved from the tree, realizing prioritized experience replay:
ei � Pi . The pseudo code of retrieving process is described in Algorithm 3.1.

Take the sum-tree structure shown in Figure 3.8 as an example. It stores four experiences
and their priorities. As the number of experiences to be sampled is k D 3, the range Œ0; 33�

is divided into three ranges: Œ0; 11/, Œ11; 22/, and Œ22; 33�. Assume that the random number
sampled from [0, 11) is h D 7, the corresponding retrieving process is as follows. According to
Algorithm 3.1, starting from the parent node, compare h with its left child node value, if h is
not bigger than its left child node value, then select the left child node, otherwise select the
right child node. Repeat the same procedure iteratively to complete the retrieval and obtain the
sample e2 with priority p2. Figure 3.8 also depicts the correspondence between the sampling
range and the final retrieved samples, which intuitively shows that the probability of obtaining
the experience sample e2 is consistent with Equation (3.25).

But on the other hand, prioritized experience replay changes the distribution consistency
of the replayed minibatch samples with the expected sample distribution, which may introduce
biases in the sampling process and thus affect the direction of strategy convergence. For this
reason, importance-sampling weights wi (IS weights) need to be introduced to correct this bias,
as shown in Equation (3.26), and replace ıi with wiıi in the DQN loss function [70]. For the
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Figure 3.9: The China typical urban driving cycle.

sake of stability, the IS weights are usually normalized by dividing them by maxiwi :

wi D

�
1

size
1

P.i/

�ˇ

; (3.26)

where size denotes the size of experience pool and ˇ is the exponent factor for IS weights.When
ˇ D 1, the non-uniform probabilities will get fully compensated. In practice, it is recommended
to linearly anneal ˇ from its initial value of ˇ0 to 1, and ˇ approaches 1 only at the end of
strategy learning.

3.3.4 STABLETRAININGMETHODFORDQN-BASEDEMSs
In this chapter, the China typical urban driving cycle (CTUDC) is chosen as the velocity profile
for EMS training, as shown in Figure 3.9. The time length of one CTUDC is 1314 s, with a full
trip distance of 5.898 km, average velocity of 4.5 m/s, and standard deviation of speed 4.2 m/s.

During strategy training, the input data of DQN needs to be normalized in advance. Data
of state variables relevant to driving cycles, including v and acc, are preprocessed by the Z-score
normalization method; all parameters for normalization (mean value and standard deviation of
each state variable) are calculated based on training driving cycles, and they will be recorded
and fixed for normalization of corresponding state variables during an EMS test on testing
driving cycles using the same method. According to predefined engine operation trajectory,
the maximum engine output power is about 55 kW, thus, by dividing the maximum power,
the engine power Peng is normalized linearly into Œ0; 1�. Originally, because SoC 2 Œ0; 1� and
�SoC 2 Œ�1; 1�, they can be fed into the networks directly. In this way, all input state data can
be approximately of similar range regardless of extremums.

With all improvements described in Section 3.3, a stable training of DQN-based EMS
can be mostly ensured. Algorithm 3.2 shows the pseudocode for the training of DQN-based
EMSs.
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Algorithm 3.2The training of DQN-based EMSs

Initialize dueling E-DQN by Xavier uniform initializer; initialize T-DQN; initialize experience
poolD; initialize exploration rate " D 1; maximum iteration number Niteration; time length of the
training driving cycle TCTUDC; size of minibatch Minibatch D 32; � D 0; p1 D 1.

1: for IterationRound D 1 W Niteration do
2: Observe initial state s.0/

3: for t D 0 W .TCTUDC � 1/ do
4: Select action by current policy a.t/ D arg maxaQ.s.t/; aj�E�DQN/ (with probability

1 � ") or random generation a.t/ D R.s.t// (with probability ")
5: Execute action a.t/ by calling the SHEV model
6: Observe reward r.s.t/; a.t// and the next state s.t C 1/

7: Store e.t/ D .s.t/; a.t/; r.s.t/; a.t//; s.t C 1// into D, and set its priority as pt D

maxipi

8: if D is full then
9: for j D 1 W Minibatch do

10: Sample a minibatch experiences from D:
ej D .s; a; s0; r/j � Pj D p�

j

.P
k p�

k

11: Compute the IS weights of ej : wj D
�
size � Pj

��ˇ
=maxiwi

12: Compute the TD-error ıj and loss function L
j
Q.�E�DQN/

13: Update the priority of ej : pj  
ˇ̌
ıj

ˇ̌
14: Compute cumulative gradient: � �C wj ıjr�E�DQN Q.s; aj�E�DQN/

15: end for
16: Update E-DQN: �E�DQN D �E�DQN C ˛l�

17: Reset cumulative gradient � D 0

18: Update T-DQN: �T �DQN D ��E�DQN C .1 � �/�T �DQN

19: Anneal exploration possibility: " D max.0:1; " � .NiterTCTUDC/�1/

20: end if
21: end for
22: end for
23: Output the final E-DQN as the trained DQN-based EMS:

� D arg maxaQ.s; aj�E�DQN/
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3.4 THELEARNINGANDEVALUATIONOFEMSs IN
CONTINUOUS STATE SPACE

3.4.1 THEBASELINE STRATEGY:DP-BASEDEMSs
For MDP problems with known global environment information, DP is an effective offline
solution to obtain the global optimal control strategy and provides a baseline for fuel economy
evaluation of other developed EMSs. DP also transforms the Bellman equation into multiple
single-step decisions to iteratively solve the global optimal strategy. First, the state and action
space of the energy management problem needs to be discretized before applying DP. Then,
the DP algorithm will traverse the discrete state-action space to obtain the tabular cost function
representation by inverse calculation, and then find the global optimal decision sequence by
forward search [103].

In this book, a generic DP Matlab toolbox (available from [104, 105]) is utilized to de-
rive the baseline, and the final SoC is constrained to its sustaining level of 60% by using the
boundary line method of this toolbox. As both DP and DRL are developed for MDP problems,
the established SHEV model and formulated energy management problem in aforementioned
sections can be mostly applied for derivation of the DP-based EMS directly. For this baseline
strategy, its application differences with the DQN-based EMSs exists in four aspects: (1) the
reward function (namely the cost function in DP) is replaced solely by the engine fuel consump-
tion rate Pmfuel; (2) accurate velocity and road profiles are assumed to be a prior; (3) only SoC is
selected as the state variable in DP and it is discretized into 50 grids between 40% and 80%; and
(4) engine control signals (the speed and torque of the engine) are chosen as control actions and
both of them are discretized into 100 grids within their feasible domains.

It should be noted that the DP-based EMS in this book does not take into account re-
alistic constraints such as frequent start/stop of the engine and control signal continuity, but
only solves the numerical optimal solution in the feasible domain of energy management prob-
lems to provide a theoretically optimal fuel economy control benchmark, thus facilitating the
evaluation of the DRL-based EMSs. In addition, it is difficult to reach or exceed the ideal fuel
economy benchmark when the general optimization-based EMSs consider realistic constraints
of the powertrain and lacks sufficient future driving cycle information, which is one of the chal-
lenges in current energy management research.

3.4.2 LEARNINGEVALUATION
In this section, the learning process of the improved DQN-based EMSs is discussed. Generally,
for DRL-based EMSs, we could evaluate their learning ability by the SoC trajectories during
training, the average single-step reward, the convergence of action value, and the loss function.
Among them, the key indicator of strategy learning is to observe whether the rewards gained
during training are increasing, which is consistent with the basic idea of reinforcement learning.
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Figure 3.10: Visualization of strategy learning process.

To enhance generalization, the initial SoC value at the beginning of each update round
is randomly selected from ŒSoCsust � 0:1; SoCsust C 0:1�. The training of DQN-based EMS on
one CTUDC takes approximately 12 min on a computer with a processor of i7-2600CPU @
3.4 GHz. As the strategy learning is realized by iterative interactions of the real-time strat-
egy over the training profile, the learning process can be described by the number of times the
training profile is traversed, i.e., the number of update rounds over the training profile.

Figure 3.10 depicts the performance of the EMS during learning. Figure 3.10a shows that
with strategy updates, the final SoC after each update round gradually approaches the sustaining
level even with different initial SoC values, which is consistent with the goal of charge sustaining.
Figure 3.10b shows that the moving average of the average single-step reward obtained by the
strategy on the training profile also rises with the learning process. To visualize the strategy
learning effect more intuitively, Figure 3.11 shows the 100 km equivalent fuel consumption per
100 km on each update round, whose moving average decreases gradually as well. On the other
hand, the fluctuations in the reward and equivalent fuel consumption recorded in real time are
mainly caused by the initial state variability and the exploration strategy, while their overall trend
is consistent with the strategy learning expectation. This also indicates, to a certain extent, that
DRL can still derive policy improvement directions from the data in the presence of changes
and perturbations.

As the core of the DQN-based EMS, the training of DQN is presented in Figure 3.12.
In Figure 3.12a, the DQN training error (loss function) gradually decreases as the training goes
on, indicating that the DQN parameters gradually converge. Meanwhile, the average action
value estimation of DQN also gradually improves and stabilizes, as shown in Figure 3.12b. The
training of DQN further suggests that the strategy gradually learns the requirements for charge
sustaining and achieves higher action value estimates.
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Figure 3.12: Visualization of DQN training process.

3.4.3 OPTIMIZATIONEVALUATION
In this section, the optimization performance of the improved DQN-based EMS will be ex-
amined by comparing with the fuel economy baseline, DP-based EMSs. Fuel consumption, as
a direct evaluation metric of the HEV energy management reflects the overall energy-saving
performance of the strategy, while its comparison with the fuel economy benchmark (fuel con-
sumption of the DP-based EMS) reveals the extent to which it can tap the vehicle’s energy
saving potential, i.e., the optimization capability.

Table 3.2 compares the performance of the two kinds of EMSs, whose initial SoC (SoCinit)
are both set as 0.6. The differences in final SoC values (SoCfinal) from sustaining level are com-
pensated into final fuel consumption, denoted by Fuelc , for a fair comparison. The fuel con-
sumption of the DQN-based EMS is about 9.8% higher than the baseline, but relatively less
in engine starts, which is more practical in the actual application considering the higher fuel
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Table 3.2: Results comparison for optimization validation

Method SoCinit SoC Neng Tcal (s) Fuelc (g) Gapfuelc

DP 0.6000 0.6000 12 24.5507 226.5 —

DQN 0.6000 0.6000  5  1.2640 248.7 9.80%

Notes: Neng: engine start times, Tcal: calculation time, Gapfuelc
: the gap of fuel 
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Figure 3.13: The performance of two strategies on the training profile.

consumption rate during idle and starting [106]. The DP strategy, as an offline optimization
method, takes about 24.6 s to compute in the simulation environment, while the trained DQN
strategy is more advantageous in terms of computational speed (about 1.3 s and the single-step
operation takes about 1 ms) owing to the fact that only the forward computation of DNNs is
involved.

Figure 3.13 shows the SoC trajectory, engine power, and cumulative fuel consumption of
theDQN strategy comparedwith theDP strategy on a training driving cycle. Figure 3.13a shows
that the DQN strategy is able to keep the SoC at the desired charge sustaining level at the end of
the trip with no battery overcharge or overdischarge, performing as expected. FromFigure 3.13b,
it can be seen that the DQN strategy has fewer engine starts on CTUDC, and accordingly its
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Figure 3.14: The engine performance of two strategies on the training profile.

average output power is slightly higher than that of the DP strategy. This result indicates that
the engine start penalty term in the reward function can effectively guide the strategy to reduce
the engine start-stop frequency. Figure 3.13c indicates that the DP strategy chooses to sacrifice
certain fuel economy in the mid-trip to obtain overall low fuel consumption. This superiority of
the DP strategy mainly owes to the termination state constraints and the boundary line method
adopted by the DP solver [105]. In contrast, strategy learning in the DQN strategy is guided
exclusively by immediate rewards and it is not advisable to set a higher discount rate considering
the training stability, which may be the main reason for the gap between DQN strategies and
the baseline. But overall, the DQN strategy performs well on the training profile.

Figure 3.14 compares the engine operation of the two strategies: the DQN strategy en-
sures that the engine works often in the efficient area, and the engine efficiency distribution and
frequency are similar to those of the DP strategy.

Since the core of DQN strategies lies in the action-value mapping, but limited by the state
diversity and the difficulty of high-dimensional spatial visualization, only the visual analysis of
action value mapping in individual scenarios is selected here to understand the learning and
optimization of the DQN strategy. Figure 3.15 shows the variation of the action-value function
output with SoC and vehicle velocity for a certain driving state (acc.t/ D 0:5 m/s2), where the
action number corresponds to each of the eight optional actions in the action space A, and the
action output represents the action value of the selected action in corresponding states. Overall,
the action value of energy management is higher when the SoC is close to the CS level, and
decreases when the power is above or below the CS level. When SoC is above the CS level
(SoC D 0:63), the Q-value of actions related to reducing or turning off the engine power is
higher, so the strategy chooses to turn off the engine regardless of the velocity (action a8), and
the driving power is entirely provided by the battery. When the SoC is below the steady holding
level (SoC D 0:57), the value of the action related to increasing the engine power is higher, so the
strategy chooses to increase the engine power quickly (action a1) to charge the power cell. With
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Figure 3.15: The performance of two strategies on the training profile.

lower SoC (SoC D 0:57), the value of the action related to increasing the engine power is higher,
so the strategy chooses to increase the engine power quickly (action a1) to charge the battery.
Around the CS level (SoC D 0:61), the strategy tends to consume some electricity: with slow
velocity, the strategy reduces the engine power (action a7), while as the velocity rises, the strategy
will choose to maintain the current engine power (action a5). When SoC D 0:60, the strategy
tends to increase the engine power appropriately (action a2) at lower velocity to maintain the
SoC stable and obtain a higher reward, while at medium and high velocity, it tends to consume
electricity to reduce fuel consumption: maintain (action a5) or reduce (action a7) the engine
power.

In summary, the optimization capability of the DQN-based EMS can be effectively ver-
ified by analyzing the fuel economy, engine start-stop frequency, and charge sustaining perfor-
mance.
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Figure 3.16: The driving cycle for tests: WVUCITY.

Table 3.3: Test results of DQN-based and DP-based strategies on WVUCITY

Group Method SoCinit SoC Neng Tcal (s) Fuelc (g) Gapfuelc

1
DP

DQN
0.6500
0.6500

0.6000
0.5984

16
 6

25.4628
 1.4537

147.5
163.2

—
10.64%

2
DP

DQN
0.6000
0.6000

0.6000
0.5988

16
12

25.2785
 1.3740

245.0
269.8

—
10.12%

3
DP

DQN
0.5500
0.5500

0.6000
0.5985

22
11

25.8424
 1.4342

343.3
371.3

—
8.16%

Notes: Neng: engine start times, Tcal: calculation time, Gapfuelc
: the gap of fuel economy with 

the DP-based EMS.

3.4.4 GENERALIZATIONEVALUATION
Since the training of DQN-based strategies is based on CTUDC, we will examine the perfor-
mance of the strategy under different driving cycles and its generalization ability in this sec-
tion. Here, the WVUCITY (duration 1408 s, total mileage 5.319 km, average velocity 3.8 m/s,
standard deviation of velocity 4.6 m/s) is chosen as the test velocity profile for generalization
verification, as shown in Figure 3.16.

We carry out strategy tests with three different initial SoC values, and Table 3.3 summa-
rizes the test results of the DQN strategy and the baseline. In the three tests, the DQN strategy
manages to regulate the SoC to near the CS level at all trip terminations (Figure 3.17). Even
without any priori knowledge of the new driving cycle, the DQN strategy exhibits a consistent
energy-saving performance, with the average fuel consumption approximately 9.6% higher than
the benchmark. Meanwhile, the DQN strategy is able to reduce the engine start frequency to
a lower level despite more dramatic velocity changes; the number of engine starts is reduced



48 3. LEARNINGOFEMSs INCONTINUOUS STATE SPACE–DISCRETEACTIONSPACE
0.650

0.625

0.600

0.575

0.550
0 250 500 750 1000 1250 0 250 500 750 1000 1250

0 250 500 750 1000 1250

Time (s)

(a) Initial SoC = 0.65

Time (s)

(c) Initial SoC = 0.55

Time (s)

(b) Initial SoC = 0.60

S
o

C

0.650

0.625

0.600

0.575

0.550

S
o

C

0.625

0.600

0.575

S
o

C

DQN strategy

DP strategy

DQN strategy

DP strategy

DQN strategy

DP strategy

Figure 3.17: SoC trajectories of the DQN-based EMS on the test profile.
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Figure 3.18: SoC trajectories of the DQN-based EMS on the test profile.

by about 46% on average compared to the baseline. The DQN strategy still shows a significant
advantage in computational speed (about 1 ms per simulation step).

Figure 3.18 shows the engine efficiency statistics for the three sets of tests, indicating that
the DQN strategy also ensures that the engine works in the efficient area as much as possible.
Besides, as the initial SoC level increases, engine operation time also decreased. Based on the
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above, we can conclude that the DQN strategy shows good generalization ability on the test
profile.

SUMMARY
(1) Taking a SHEV as an example, this chapter establishes its energy consumption model as a
policy interaction environment for DRL, and introduces continuous state space—discrete action
space in energy management based on this vehicle model. Based on the discrete action space, a
mappingmethod for action-value function of energymanagement is introduced, and the discrete
kind of EMS learning theory based on deep Q-learning and its training method are stated.

(2) Based on the originalDQN-basedEMS, three aspects of improvements are introduced
to enhance its training stability, including optimization of the DQN structure, improvement in
estimation of target Q-value, and prioritized experience replay.

(3) The learning of the improved DQN-based EMS is evaluated in terms of the training
error, convergence of the action-value function, SoC trajectory, reward returns, fuel consump-
tion, etc. A global optimal EMS based on DP is constructed as the benchmark and the fuel
economy baseline, which provides assessment of the optimization and generalization capability
of DQN-based EMSs. The results indicate that the improved DQN-based EMS designed for
continuous state space—discrete action space has an average gap of about 9.7% in energy savings
from the baseline and excels in reducing the engine start-stop frequency and calculation speed.
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C H A P T E R 4

Learning of EMSs in
Continuous State–Continuous

Action Space
Depending on the modeling approach or configuration types, some energy management prob-
lems modeled as the MDP have single or multiple continuous control actions. For such prob-
lems, traditional optimization methods usually adopt discretization solutions, but their appli-
cation scenarios and computational amount are vulnerable to dimensional issues. The study of
continuous energy management methods that can directly search for the optimal policy in the
continuous state—continuous action space will be of great benefit to the expansion of applica-
tion range to a certain extent. In addition, based on the continuous energy management method,
this chapter also introduces a PHEV energy management solution integrating history cumula-
tive trip information (HCTI) to improve the EMS learning effect across a wider feasible domain
of SoC.

4.1 ENERGYMANAGEMENTBASEDONDDPG
METHOD

The method presented in this chapter is independent of powertrain topology such that it is
applicable to any type of HEV with continuous state and continuous action space.Therefore, we
simply adopt the SHEV in Chapter 3 as the study case for continuous DRL-based EMSs. The
energy consumption model is described in Section 3.1.The formulation of energy management,
the agent-environment interaction, and the definition of continuous state space in Section 3.2
still apply here. The difference lies in the following two aspects.

(1) The goal of PHEV energy management. Since the study case here is a PHEV, the
pattern of electricity consumption is no longer limited by charge sustaining. Meanwhile, it has
been shown that for PHEV energy management, reasonable scaling of battery capacity in sim-
ulation can effectively reduce the length of test profiles and accelerate the simulation speed, and
the accelerated simulation results can still effectively evaluate the strategy [8]. Therefore, the
SHEV in the last chapter will be treated as a PHEV (expected driving range of 100 km and
feasible SoC domain of Œ0:2; 1:0�) for explanation of continuous EMSs.
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Typically, when PHEVs operate in electric mode, the powertrain energy flow is unique

and deterministic according to the even torque distribution assumption between the front and
rear axle, and no energy management is required in this circumstance. Thus, this chapter mainly
deals with the case where there is no limitation in energy consumption pattern, i.e., the energy
flow is totally determined by EMSs to balance fuel and electricity consumption for better fuel
economy within the expected driving range. This mode of energy management is referred to as
Blended Mode (BM).

(2) The definition of continuous action space. We still control the engine following the
pre-defined optimal working trajectory, and take the variation of engine power �Peng as the
control action. However, �Peng will not be discretized, but treated as a continuous action.Then,
the one-dimension action space can be expressed as A D

˚
�Pengj�Peng 2 .�10 kW; 10 kW/

	
.

Specially, when �Peng < �4 kW, the engine will be shut off; the engine will only start when
constraints in Equation (3.5) are satisfied.

4.1.1 LEARNINGTHEORYOFDDPG-BASEDEMSs
To deal with continuous action outputs, we will adopt a parameterized approximation method,
the DNN, to express the EMS, namely the strategy network, or action network (Actor). The
actor network �, parameterized by ��, takes state s as input and outputs action a. The corre-
sponding EMS � is as shown as follows:

� D �.sj��/: (4.1)

Figure 4.1 shows the structure of the strategy network (Actor). The neurons in the input
layer coincide in number with the dimension of the state space S .There are three fully connected
hidden layers consisting of 100-100-100 units and each layer is followed by ReLU activation
functions. An output layer processed by a sigmoid function is connected to the inner product
layer to output the bounded action �Peng D 10�.sj��/ kW, �Peng 2 .�10 kW; 10 kW/.

Different with the Actor network, the Critic network (Q, as shown in Equation (4.2)
and Figure 4.1) takes state s and action a as input and outputs estimated action-value Q.s; a/

which evaluates the current action. Considering the dueling architecture in DQN, the Critic is
designed to have two streams, one for the action and another one for the state, and the neuron
number of the input layer is the sum of state space dimension and action space dimension.
Both streams are processed by three fully connected layers consisting of 100-100-100 units,
respectively. Each fully connected layer is followed byReLU activation functions. A linear output
layer is connected to the final inner product layer to output of single scalar Q.s; a/:

Q.s; a/ D Q.s; aj�Q/; (4.2)

where �Q denotes parameters of the Critic.
As a stochastic policy method, in the original Actor-Critic algorithm, the Actor outputs

the probability distribution of each action, and the control action is randomly generated based on
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Figure 4.1: The architecture of Actor-Critic networks and gradients back propagation.

their corresponding probability [56]. However, the algorithm itself is not stable enough because
it introduces multiple nonlinear approximation functions, and the samples are not efficiently uti-
lized as a stochastic policy method.Therefore, DeepMind proposed a novel deterministic policy
gradient method based on the Actor-Critic structure, where the Actor outputs deterministic
actions and the strategy is improved directly based on the policy gradient [80]. Then, the deter-
ministic Policy Gradient (DDPG) algorithm was proposed by further combining deterministic
policy gradient with DQN, which excelled in Atari games [62]. In this chapter, we choose to
combine the DDPG to implement the update and improvement of the parameterized EMS, so
as to solve the energy management optimization in the continuous state-action space.

First, the training goal of the strategy network during iterative learning can be re-expressed
as follows. Update the policy network parameters so that its action output at a given state, evalu-
ated by the evaluation network, can achieve a higher action value, i.e., update the policy network
parameters to obtain a higher action value. It can be seen from Figure 4.1 that the update di-
rection can be mathematically expressed as the gradients of action value Q.s; a/ with respect to
parameters �� of the strategy network �, which could be calculated by the chain rule, as shown
in Equation (4.3):

r��� D raQ.s; aj�Q/r���.sj��/: (4.3)



54 4. LEARNINGOFEMSs INCONTINUOUS STATE–CONTINUOUSACTIONSPACE
Equation (4.3) gives the policy gradient and then gradient descent can be applied for

parameter update of the strategy network.
On the other hand, we should notice that to make the Actor update count, it is also

necessary to ensure that the Critic network Q is constantly improving in terms of evaluative
rationality during training. Hence, similar to DQN, the TD error is likewise defined as the loss
function LQ which is used to train the Critic network Q, as shown in Equation (4.4):(

Target D r C 
Q.s0; �.s0j��/j�Q/

LQ.s; aj�Q/ D
�
Target �Q.s; aj�Q/

�2
;

(4.4)

where Target refers to the actual action value estimated by reward feedback.
Accordingly, the Critic network update gradient r�QLQ is calculated as follows:

r�QLQ.s; aj�Q/ D 2
�
y �Q.s; aj�Q/

�
r�QQ.s; aj�Q/: (4.5)

The forward propagation (Equations (4.1) and (4.2)) and the backward propagation
(Equations (4.3) and (4.4)) of AC networks are depicted in Figure 4.1 as well. Finally, the update
of the two sets of AC networks is summarized as:(

�Q D �Q C ˛lr�QLQ

�� D �� C ˛lr���;
(4.6)

where ˛l is the learning rate computed by ADAM method [100].

4.1.2 TRAININGOFDDPG-BASEDEMSs
According to the strategy learning theory in Section 4.1, we can find that it is necessary to update
the Actor network � and the Critic network Q synchronously and alternately, and their updates
are mutually dependent. This makes it critical to ensure stable learning of continuous DRL-
based EMSs. This section will describe how to optimize the data flow of parameter updates to
improve training stability.

First, similar to the DNQ method, experience replay is also used here to break the high
correlation between sequential data and make full use of hardware computational resources, and
network updates are performed using batch samples.The experience samples e D .s; a; s0; r/ will
be deposited into the experience pool D in a circular queue with the experience pool capacity
size D 104 and minibatch size of 32.

Second, to reduce the variation of actual action value during strategy training, a replica
of this AC networks, namely the target AC networks (QT and �T ), are introduced, which are
parameterized by �

Q
T and �

�
T , respectively. During training, the parameters of the target networks

will slowly track that of the original AC networks, as shown in Equation (4.7):(
�

Q
T D �

Q
T C �.�Q � �

Q
T /

�
�
T D �

�
T C �.�� � �

�
T /;

(4.7)
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Figure 4.2: The dataflow graph of network forward propagation and gradient backward propa-
gation.

where � (� � 1) is the tracking rate of target AC networks’ update.
As the target network parameters are updated relatively slowly, the calculated actual action

value is also relatively stable, thus contributing to stable training. Then, the loss function can be
redefined as:

LQ.s; aj�Q/ D E.s;a;s0;r/�U.D/

h�
r C 
QT .s0; �T .s0

j�
�
T /j�

Q
T /

�
�Q.s; aj�Q/

i2

; (4.8)

where the target AC networks are used to generate the actual action value target for the Critic
update.

Therefore, the new update gradient of the AC network will be:

r�QLQ D E.s;a;s0;r/�U.D/

h
2

�
r C 
QT .s0; �T .s0

j�
�
T /j�

Q
T / �Q.s; aj�Q/

�
r�QQ.s; aj�Q/

i
:

(4.9)
r��� D Es�U.D/

�
raQ.s; aj�Q/r���.sj��/

�
: (4.10)

For the two sets of ACnetworks, their dataflow graph of forward propagation and gradient
back-propagation processes are depicted in Figure 4.2. The forward propagation will map the
state vector to the action vector, while the gradient backward propagation will help update all
network parameters for strategy improvement.

The dataflow graph of network forward propagation and gradient backward propagation
With these two measures, the sable training of continuous DRL-based EMSs can be

basically guaranteed. The next section will specify the details of the training method in the
context of PHEV energy management.
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4.2 CONTINUOUSENERGYMANAGEMENTENABLED
BYTRIP INFORMATION

It is still challenging to derive a nearly optimal online EMS that is applicable in diverse driving
cycles for a specific PHEV, especially when there is no priori knowledge of future trip informa-
tion. To deal with the uncertain of future trip, short-term velocity predictors are introduced in
many MPC-based EMSs: given a moving prediction horizon at each time step, optimal con-
trol algorithms can be used to solve the short-term energy management problem under the
framework of MPC [32, 44]. Meanwhile, recent progresses in predictions based on deep learn-
ing [107, 108] and driving cycle reconstruction utilizing traffic data [12, 39] can also facilitate
the relevant research. However, the application effects of these methods are still quite correlated
with predictor accuracy and availability of traffic data. Some MPC-based EMSs are designed
based on an average power concept when future trip information is unavailable [31, 109], yet
this approach is more suitable for vehicles with regular and stable driving conditions. Therefore,
it is beneficial to evaluate and integrate new methods into implementation of EMSs suitable for
the entire trip and SoC range without priori knowledge.

On the other hand, for PHEVs, exploring and improving the strategy in continuous action
space and full battery capacity range requires massive sample data, which is not conducive to
accelerating the learning speed and may even cause policy learning failure. In this case, accurate
analysis of vehicle and driving states, and efficient exploration guidance in a high-dimensional
space will be helpful for strategy learning.

Therefore, in this section, history cumulative trip information is integrated for effective
SoC guidance in continuous DRL-based EMSs. The overall schematic of this energy manage-
ment method is shown in Figure 4.3. Generally, its implementation is divided into the following
three periods.

(1) Period I. Deep reinforcement learning in simulation: this period is the training of
EMSs. The DDPG algorithm is adopted to update the parameterized EMS in the simulation
environment. The update is based on state transition data generated by iterative interactions
among the SHEV model, its history cumulative trip information (HCTI), and the EMS.

(2) Period II. Strategy download: when the training gets convergent, parameters and
structure of the neural network are saved as the trained EMS.

(3) Period III. Strategy online application: the downloaded EMS can be directly used for
online application by simply mapping state to actions for energy management.

4.2.1 UTILIZATIONOFHISTORYTRIP INFORMATION
As explained in Section 1.3, for PHEVs, BM mode provides better coordination of the on-
board power sources compared to CD+CS mode and ensures gradual battery depletion along
the whole trip. The EMS obtained by DP can be considered as the optimal BM strategy when
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Figure 4.3: The overall schematic of DRL-based EMS enabled by history trip information.

the entire trip information is known, and usually, its SoC trajectory also shows an evenly de-
creasing trend [19]. Therefore, we can assume that it will be helpful to search for a near-optimal
EMS when a reasonable and appropriate electricity consumption guide is given.

When there is no external information source, the past driving information is the most
convenient source to collect the driving cycle information. To understand the role of historical
trip information in energy management, four trips with a distance of 100 km are constructed
based on standard driving cycles (CTUDC, JN1015, MANHATTAN,WVUCITY), and DP-
based EMSs are derived on these trips separately. The initial state and final state constraints are
set as SoCinit D 1:0 and SoCsust D 0:20, respectively. The results are shown in Figure 4.4 where
all the SoC trajectories tend to decrease gradually to sustaining level over the entire trip despite
different trips. This phenomenon and its better fuel economy of BM are also demonstrated in
many research [23, 110], and Sun C. et al. also pointed out that space-domain-indexed SoC
reference, SoC reference values indexed by space, can consistently bring in good fuel economy
performance [12].

Therefore, to ensure that the SOC trajectory generated by DRL-based EMS is close to
the global optimal SOC trajectory without priori knowledge of the future trip, a linear planning
method of the SoC reference trajectory, utilizing HCTI to obtain the space-domain-indexed



58 4. LEARNINGOFEMSs INCONTINUOUS STATE–CONTINUOUSACTIONSPACE

1.0

0.8

0.6

0.4

0.2

0 20 40 60

CTUDC

JN1015

MANHATTAN

WVUCITY

Distance (km)

S
o

C

80 100

Figure 4.4: Global SoC trajectories optimized by DP.

SoC trajectory, is introduced here as the dashed line in Figure 4.4 shows.The details are described
below.

Once the vehicle gets fully charged, the travel distance d will be set as the initial state,
d.0/ D 0 km. The space-domain-indexed SoC is calculated in discrete-time by:(

SoCref .t/ D SoCinit � � min.d.t/; L/

� D .SoCinit � SoCsust/=L;
(4.11)

where SoCref .t/ is the space-domain-indexed SoC at moment t . � is the descent rate of SoC in
the space domain and L denotes the expected driving range with a fully charged battery, 100 km.

Besides, the travel distance d after last charge, the SoC deviation �SoC (Equation (4.12))
are added as new state variables into state space S :

�SoCref .t/ D SoC.t/ � SoCref .t/: (4.12)

4.2.2 REWARDDEFINITION
Because the driving mileage is difficult to predict in advance and the battery power is limited,
it is hard to obtain the optimal EMS over the entire trip without a priori information about the
future global driving cycle. Thus, the PHEV working modes are set according to the expected
maximum driving range L: the PHEV works at BM within the driving range (d.t/ < L), and
switches to CS mode to meet the driving demand as much as possible when d.t/ � L, although
the vehicle still should be charged in time at this circumstance.

Reward for BM: EnergyManagement Enabled byHistory Trip Information
Within the expected driving range (100 km), the SoC of this SHEV is expected to decrease
evenly. Meanwhile, the fuel consumption needs to be minimized during the whole trip. Thus,
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the reward signal for the training of BM is defined as:

r D � tanh
�
� Pmfuel C '

ˇ̌
�SoCref

ˇ̌�
; (4.13)

where � and ' denote the factor of fuel consumption rate and SoC deviation, respectively. In-
tuitively, a larger ' means that tracking the SoC guidance more closely can get higher reward,
while a larger � means that reducing fuel consumption can bring higher reward. The basic prin-
ciple for parameter tuning of ' and � is to improve the fuel economy as much as possible while
ensuring that the trained strategy can always meet SoC requirements; in this chapter, ' and �

are set to be 50 and 150, respectively, after repeated tuning.
The main influence factors are summarized as follows.

(1) Different strategies have different requirements for SoC. The SoC requirements are
as follows: for the blended mode of EMS, the SoC needs to track the changing reference value
derived from history cumulative trip information, while for CS mode of EMS, the SoC needs
to maintain the constant sustaining level. So, due to the different SoC requirements, the two
parameters need to be adjusted accordingly for better learning as well.

(2) A large � may slow down the learning process. Because of the nonlinear engine effi-
ciency map and changing strategies during training, the signal of fuel consumption rate is much
nosier and irregular compared with the signal of SoC deviation, making it difficult to learn, es-
pecially at the beginning period when the possibility of taking a random strategy is 1. Thus, the
fact is that increasing � in reward signal does not necessarily make the learning better, and it is
likely to lead to instability or even divergency in DRL-based EMSs’ training.

On the other hand, a larger � can make the strategy learn to track the SoC guidance
more quickly at the beginning period. As long as the item of SoC deviation decreases gradually,
the item of fuel consumption rate will be considered more in the learning. Therefore, a proper
parameter tuning should allow the strategy learning to consider more about satisfaction of SoC
deviation at first and, in a later period, to consider more about fuel economy.

(3) The two parameters cannot be too small. As all the networks are initialized with ran-
dom weights by Xavier uniform initializer, the initial output of Critic should be a number close
to zero. Meanwhile, as shown by the loss function of Critic, the update of Critic is highly de-
pended on the reward r . Therefore, in the beginning of training, if reward r is too small than
the initial output of Critic, the update may get misguided by the initial output of Critic, which
is harmful to stable training.

As a result, the two parameters could be set to be the same at first. Then, we can adjust
them accordingly with evaluation of the training process, including the stability, convergence
speed, final performance of the strategy.

The history trip information is considered both in reward signal by
ˇ̌
�SoCref

ˇ̌
de-

fined in Equation (4.13), and in input state vector s that belonging to state space s 2
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S D fSoC; Peng; v; acc; d; �SoCref g, to derive the DRL-based EMS (blended mode), �BM D

�BM .sj��/.
�BM is trained on one training driving cycle with fixed initial SoC of 0.8, which is assumed

to be the same as SoCref . The initial observation state is s.0/ D Œ0:8; 0; 0; 0; 0; 0�. The training
driving cycle will be given in the next section.

Reward for CSMode: EnergyManagement for Charge Sustaining
Once the SHEV has traveled beyond the expected driving range and still has not been charged
in time, the EMS should switch to CS mode: keep SoC stable near the low level while
balancing fuel economy. New Actor-Critic networks are established for EMS of CS mode:
�CS D �CS .sj��/. As there is no need updating the space-domain-indexed SoC, we can de-
fine the state space as S D fSoC; Peng; v; acc; �SoCCSg, where �SoCCS D SoC � SoCsust. The
corresponding reward function is basically consistent with Equation (3.10), but the SoCsust is
set as the lower limit of the SoC feasible domain (0.2). Here, � and ' are set to be 40 and 36,
respectively, after repeated tuning.

CS mode of DRL-based EMS is trained on the same training driving cycle but with
random initial SoC from Œ0:1; 0:3�, denoted SoCrand, making sure the EMS can switch to CS
mode successfully regardless of different final SoC values at the end of blended mode.The initial
observation state s.0/ D ŒSoCrand; 0; 0; 0; .SoCrand � SoCsust/�.

Instead of applying the penalty term in the reward function, a more flexible solution for
the issue of frequent engine starts is illustrated in Section 4.2.5 by adjusting the strategy output
frequency.

4.2.3 TRAININGALGORITHM
As shown in Figure 4.5, the China typical urban driving cycle (CTUDC) is selected as the trip
for training of DRL-based EMS; to test its adaptability, a mixed driving cycle is constituted
as the trip for test. The length of one trip for training and testing is 5.898 km (1314 s) and
66.971 km (8166 s), respectively.

The characteristics of each driving cycle are summarized in Table 4.1, which indicates
that the test trip is statistically different with the training trip, making relevant verifications
more objective.

Based on the learning theory of DDPG-based EMSs, the training of EMS enabled by
cumulative history trip information for PHEVs is described as follows. First, the training of
blended mode strategy, �BM.

Before feeding the data into AC networks for training, data normalization is required,
which is similar to that in Section 3.3.4. The travel distance d is normalized linearly into Œ0; 1�

by the expected range L. Originally, because SoC and �SoCref is relatively small, they can be fed
into the networks directly.
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Figure 4.5: The driving cycles for training and testing.

Table 4.1: Characteristics of selected driving cycles

Driving Cycles
Max. Vel. 

(m/s)
Avg. Vel. 

(m/s)
Max. Accel. 

(m/s2)
Max. Decel. 

(m/s2)
Time Ratio

(Timeacc /Timedec)

CTUDC 16.67  4.49 0.91 –1.04 1.44

WVUCITY 16.01  3.78 1.14 –3.24 1.30

WVUSUB 20.02  7.19 1.29 –2.16 1.28

WVUINTER 27.15 15.22 1.42 –1.86 1.06

WLTP Class2 23.67  9.92 1.00 –1.17 1.15

JN1015 19.44  6.30 0.79 –0.83 1.11

Mixed 27.15  8.20 1.42 –3.24 1.21

Next, with experience relay and the update of space-domain-indexed SoC reference, the
training of �BM can be realized, which is illustrated in Figure 4.6. The initialization method
for AC networks adopted is Xavier uniform initializer [102]. In "-greedy exploration, the ran-
dom processR will generate random actions from interval Œ�10; 10�; the probability of strategy
exploration and exploit are " and 1 � ", respectively, with " annealing gradually with training.
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Figure 4.6: The training of DDPG-based EMSs.

The pseudocode for training of �BM is shown in Algorithm 4.3, where the IterationRound
is counted from the first update.The training of �CS is generally the same with �BM, but requires
three changes: (1) line 9 needs to be deleted; (2) line 10 is replaced by “Obtain next state of SoC
deviation by �SoCCS .t C 1/ D SoC.t C 1/ � SoCsust;” and (3) line 11 is replaced by “Collect
new state s.t/ D ŒSoC.t C 1/; Peng.t C 1/; v.t C 1/; acc.t C 1/; �SoCCS .t C 1/�.”

4.2.4 LEARNINGEVALUATION
With a processor of i7-2600CPU@3.4GHz, we trained the DDPG-based EMS for 96 rounds
of updates, and the strategy is updated iteratively every second during the training trip.The total
training time is about 9.7 min on average. The learning of both modes (BM and CS mode) is
discussed as follows.

(1) The learning of EMS for Blended Mode: the loss function of DDPG-based EMS for
BM shows apparent convergence after iteratively training as shown in Figure 4.7a, which means
the estimation of action-value function has been basically stable and can gradually provide more
stable guidance for the update of EMS (BM).
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Algorithm 4.3The training of DDPG-based EMSs.

Initialize AC networks by Xavier uniform initializer; initialize target AC networks; initialize
experience pool D; initialize exploration rate " D 1; maximum iteration number Niteration; time
length of the training driving cycle TCTUDC; size of minibatch Minibatch D 32.

1: for IterationRound D 1 W Niteration do
2: Observe initial state s.0/

3: for t D 0 W .TCTUDC � 1/ do
4: Select action by current policy a.t/ D �.s.t/j��/ (with probability 1 � ") or random

generation a.t/ D R.s.t// (with probability ")
5: Execute action a.t/ by calling the SHEV model
6: Observe reward r.s.t/; a.t// and the next state s.t C 1/

7: Observe next state, including: ŒSoC.t C 1/; Peng.t C 1/; v.t C 1/; acc.t C 1/�

8: Update history trip information d.t C 1/ D d.t/C v.t/

9: Get SoC deviation �SoCref .t C 1/ D SoC.t C 1/ � ŒSoCinit � �d.t C 1/�

10: Collect new state vector s.t C 1/ D ŒSoC.t C 1/; Peng.t C 1/; v.t C 1/; acc.t C

1/; d.t C 1/; �SoCref .t C 1/�

11: Store e.t/ D .s.t/; a.t/; r.s.t/; a.t//; s.t C 1// into D
12: if D is full then
13: Sample a random minibatch of experiences ej (j D 1; 2; :::; Minibatch)
14: Calculate actual action value of ej : Targetj D r C 
QT .s0; �T .s0j�

�
T /j�

Q
T /

15: Calculate loss function of ej : L
j
Q D ŒTargetj �Q.s; aj�Q/�2

16: Update the Critic network to minimize the loss function LQ D

P
j L

j
Q

Minibatch

17: Calculate the policy gradient of ej : rj

��� D raQ.s; aj�Q/r���.sj��/

18: Calculate the average policy gradient r��� D

P
j r

j

�� �

Minibatch and update the Actor net-
work

19: Update the target Critic network QT : �
Q
T D �

Q
T C �.�Q � �

Q
T /

20: Update the target Actor network �T : �
�
T D �

�
T C �.�� � �

�
T /

21: Anneal exploration possibility: " D max.0:1; " � .NiterTCTUDC/�1/

22: end if
23: end for
24: end for
25: Output the final parameterized strategy network � as the trained �BM

The convergence of Actor network, �BM, is reflected by the change of final SOC after
each update round of one training trip as shown in Figure 4.8a. The final SoC varies obviously
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Figure 4.7: The loss function of Critic during training.

in the beginning period of training, and gradually converges to terminal reference SoC (0.7528,
calculated by Equation (4.11)) with updating. Because regenerative braking at the end of the
training trip will lead to SoC rise, so the strategy finally learns to sacrifice the consistency of
final SoC for higher mean rewards during the entire training trip, as indicated in Figure 4.8a.

(2) The learning of EMS for Charge Sustaining Mode: after about 4 min of training, the
loss function of EMS for the CS model has converged significantly, as shown in Figure 4.7b.
Compared with BM, the CS model shows an overall smaller training loss because the SoC
sustaining goal remains constant all the time, making it easier to learn.

This convergence is also reflected by indicators of EMS (CS Mode) as shown in Fig-
ure 4.8b. We vary the initial SoC randomly at the beginning of each update round as the gray
line shows. Accordingly, the final SoC varies during the initial training period. But gradually, it
converges to the sustaining level regardless of diverse initial SoC values. The mean reward also
rises gradually, but not as smooth as that in the training of BM due to the diversity in initial
state.

4.2.5 OPTIMIZATIONEVALUATION
The online application of DDPG-based EMSs is illustrated in Figure 4.9. As the operation
of the engine is decoupled with driving requirements, thus to avoid frequent engine starts and
shutoffs, we adjust the original output control signal to a lower frequency, which is referred to as
output frequency adjustment in the following sections: clip control signals within these 10 s by
interval Œmin; max� D Œa.t0/ � 1; a.t0/C 1� .kW/, and a.t0/ is updated every 10 s, thus limiting
the strategy output in a rolling time domain.

The derived DDPG-based EMSs, both the BM strategy and the CS mode strategy, are
tested on one original training trip to examine its optimality.The DP-based EMS is still consid-
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ered as the benchmark with the best fuel economy.Meanwhile, for validity verification of output
frequency adjustment in online applications of DRL-based EMSs, additional simulations are
carried out. The abbreviations and meanings of the specific EMSs involved here are as follows.

(a) DP-based EMS: DP-based EMS as described in Section 3.4.1.

(b) Blended Mode@O: Original BM of DRL-based EMS without output frequency ad-
justment.

(c) Blended Mode@A: BM of DRL-based EMS with output frequency adjustment.

(d) CS Mode@O: Original CS mode of DRL-based EMS without output frequency
adjustment.

(e) CS Mode@A: CS mode of DRL-based EMS with output frequency adjustment.
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First, the BM strategy is examined. All initial SoC values are set as 0.8. For DP-based
EMSs, the final SoC is constrained by the expected final SoC after one training trip in DRL-
based EMS, which is calculated to be 0.7528.

The SoC trajectories of BlendedMode@A andDP-basedEMS are shown in Figure 4.10a.
Overall, the trajectory of Blended Mode@A follows the space-domain-indexed SoC more
closely, realizing an even descent of SoC over the training trip. The deviation of final SoC
for Blended Mode@A is 0.0046, indicating the history trip information has been effectively
considered by the BM strategy.

The detailed simulation results for one training trip are shown in Group No. 1, Table 4.2.
For fairly comparison, the fuel consumption should be compensated because of varies SoC final
values [111], so the deviation between final SoC and expected final SoC has been compensated
in fuel consumption calculation by vehicle model [12]. From Group No. 1, the compensated
fuel consumption of Blended Mode@O only has a gap of 5.31% compared with the DP-based
EMS, which is less than Blended Mode@A (8.55%), but generally, they both have achieved
good fuel economy. The engine operating points and its distribution of efficiency are depicted
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Table 4.2: Simulation results of DRL-based EMS for one training trip

Group Method SoCinit SoC Neng Tcal (s) Fuelc (g) Gapfuelc

1
DP

BM@O
BM@A

0.8000
0.8000
0.8000

0.7528
0.7548
0.7574

 8
26
 6

24.9478
 1.3065
 1.4684

129.9
136.8
141.0

—
5.31%
8.55%

2
DP

CS@O
CS@A

0.2000
0.2000
0.2000

0.2000
0.2079
0.2105

11
51
10

23.9792
 1.2470
 1.2810

228.1
235.0
248.5

—
3.02%
8.94%

Notes: Neng: engine start times, Tcal: calculation time, Gapfuelc
: the gap of fuel economy with 
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Figure 4.11: Simulation results of Blended Mode@A.

in Figure 4.11 and the average operation efficiency of Blended Mode@A and DP-based EMS
is 0.4254 and 0.4260, respectively. This demonstrates that Blended Mode@A can guarantee an
efficient engine operation, verifying its optimality on the training trip.

On the other hand, with output frequency adjustment, the number of engine starts in
Blended Mode@A decreases dramatically from 26 to 6, which is also less than that of the DP-
based EMS, verifying the validity of output frequency adjustment in the application of Blended
Mode@A.

Second, the CS mode is examined. All initial SoC values are set as the sustaining level
of 0.2. For the DP-based EMSs, its final SoC is constrained by sustaining level of SoC. Fig-
ure 4.10b shows the SoC trajectories of CS Mode@A and DP-based EMS. Similarly, the SoC
trajectory of CS Mode@A is closer to the target sustaining level than the DP-based EMS,
indicating the CS Mode@A puts more emphasis on SoC sustaining under current parameter
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Figure 4.12: Simulation results of CS Mode@A.

settings. Fundamentally, this phenomenon is caused by differences in the way the two policies
are derived. However, it is worth noting that increasing the weight of fuel consumption in re-
ward signal does not necessarily make the SoC trajectory closer to that of DP-based EMS, and
it is likely to lead to instability or even divergency in DRL-based policy’s training, which is prob-
ably because the fuel consumption signal is much noisier, making it harder to learn. Despite this
point, the CS Mode@A has successfully realized charge sustaining of SoC near the sustaining
level.

The corresponding simulation results are also shown in Group No. 2, Table 4.2. CS
Mode@O achieves quite good fuel economy with a gap of only 3.02% compared with the DP-
based EMS, but CS Mode@A remarkably reduces the number of engine start times from 51
to 10, even less than the baseline strategy, and achieves reasonable fuel economy with the gap
of 8.94% from the DP-based EMS. Corresponding engine operating points and distribution of
efficiency are depicted in Figure 4.12, and the average operation efficiency of CS Mode@A and
DP-based EMS is 0.4256 and 0.4282, respectively, which are similar to simulation results of
Blended Mode@A.

4.2.6 GENERALIZATIONEVALUATION
CSMode@Awith Different Initial SoC
Two initial SoC values are chosen, 0.25 and 0.15, respectively, to examine whether the DDPG-
based EMS can switch to CS mode smoothly with different final SoC values.

Figure 4.13 shows the simulation results, indicating that whatever the initial SoC is at the
beginning of CS mode, SoC sustaining can be appropriately realized by CSMode@A. Detailed
results are summarized in Table 4.3.

On the other hand, comparingGroupNo. 1 inTable 4.2 andGroupNo. 1 inTable 4.3, it is
interesting to notice that the BM strategy achieves better fuel economy than the CSMode with
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Figure 4.13: SoC trajectories of CS Mode@A with different initial SoC values.

or without output frequency adjustment. This proves, from another perspective, that utilizing
history trip information in strategy learning is indeed beneficial for the improvement of fuel
economy before SoC reaches the sustaining level.

Performance on the Long Training Trip
To examine the performance of DDPG-based EMSs, including BM@A and CS@A, it will be
tested on a long trip (total mileage of about 106.157 km) consisting of 18 consecutive training
trips.

In addition, we take the obtained SoC trajectory of the DP-based EMS as a priori and de-
rive a DDPG-based EMS; this priori is utilized as the time-domain indexed SoC reference. To
derive this method, the original SoC deviation in state space is replaced by a new SoC deviation
from the time-domain indexed SoC reference, and the network parameters remain unchanged.
Finally, three methods are compared as follows.

(1) DP: the DP-based EMS with initial SoC of 1.000 and final SoC constrain of 0.2000.
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Table 4.3: Generalization test results of the DDPG-based EMS in CS mode

Group Method SoCinit SoC Neng Tcal (s) Fuelc (g) Gapfuelc

1
DP

CS@O
CS@A

0.2500
0.2500
0.2500

0.2000
0.2090
0.2069

 7
31
 6

26.9772
 1.2314
 1.2945

132.2
140.7
147.2

—
 6.43%
11.35%

2
DP

CS@O
CS@A

0.1500
0.1500
0.1500

0.2000
0.2079
0.2116

10
52
11

24.2241
 1.2976
 1.3160

324.5
338.4
354.5

—
4.28%
9.24%

Notes: Neng: engine start times, Tcal: calculation time, Gapfuelc
: the gap of fuel economy with 

the DP-based EMS.

Table 4.4: Simulation results of DRL-based EMS for a long training trip

Group Method SoCinit SoC Neng Tcal (s) Fuelc (g) Gapfuelc

1 DP 1.00 0.2000  80 400.2769 2473.3 —

2 DDPG@T 1.00 0.2276  76  22.1353 2711.6 9.63%

3 DDPG@S 1.00 0.2090 108  22.8873 2689.9 8.76%

Notes: Neng: engine start times, Tcal: calculation time, Gapfuelc
: the gap of fuel economy with the 

DP-based EMS.

(2) DDPG@T: the DDPG-based EMS utilizing the SoC trajectory of the DP-based
EMS as SoC reference, which is indexed by time.

(3) DDPG@S: the DDPG-based EMS utilizing history trip information in space-
domain.

On the long trip, the SoC of DDPG@S descents evenly within the expected driving
range and then maintains at sustaining level as shown in Figure 4.14, which is consistent with
the expected performance. The DP-based EMS chooses to consume electricity quickly at first
and then keeps SoC drops slowly between 0.6 and 0.4. This is because the energy loss in battery
is relatively less within this SoC range due to smaller internal resistance, but it is hard to derive
such policy without the entire driving profile. The SoC of DDPG@T is quite close to that of
DP-based EMS with this priori.

Detailed results are summarized in Table 4.4. The fuel economy performance gap of
DDPG@S is 8.76% which is consistent with performances on a short training trip. However,
in this scenario, the engine starts more by even SoC descent than the baseline strategy. The
fuel economy performance gap of DDOG@T is slightly larger but its number of engine start
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Figure 4.14: SoC trajectories of the DDPG-based EMS and DP-based EMS.

decreases dramatically, even less than the DP-based EMS, which could be much more bene-
ficial for energy-saving in practice. Therefore, studying how to combine global SoC trajectory
planning methods with DRL-based EMS should be a potentially valuable research direction.
Overall, the performance of the DDPG-based EMS on a long training trip is in line with ex-
pectations.

4.3 COMPARISONBETWEENCONTINUOUS
DRL-BASEDANDMPC-BASEDEMSs

4.3.1 THECONTRASTMETHOD:MPC-BASEDEMSs
Similar to the EMS described in this chapter that utilizes history trip information to obtain a
space-domain-indexed global SoC trajectory as guidance, classicMPC-based EMSs also require
a global SoC trajectory as a constraint. So,MPC-based EMSs are introduced here as the contrast
strategies, as shown in Figure 4.15. In this brief, the MPC-based EMS takes the same space-
domain-indexed global SoC trajectory as a constraint for terminal SoC regulation in each control
horizon; DP is adopted to solve the control problem when predicted velocities are provided in
each receding horizon (10 s after the current moment).

By comparing three kinds of driving cycle predictors, including velocity predictors using
the exponentially varying method, the Markov-chain method, and the neural network method,
Sun et al. showed that the prediction error over the next 10 s ranged from 2 m/s to 4 m/s [44].
So, to evaluate the MPC-based EMS more precisely, the horizon velocity predictor here works
by adding certain Gaussian noises with specific standard deviation to the real future velocities in
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each receding horizon, resulting in three kinds of MPC-based EMSs with different prediction
errors as follows.

(1) MPC-based EMS@0: real future velocity is adopted as the predicted velocity in each
receding horizon, i.e., this is an exactly accurate prediction.

(2) MPC-based EMS@1: add Gaussian noise with a standard deviation of 1 (m/s) to real
future velocity as the predicted velocity in each receding horizon, i.e., the prediction error is
1 m/s.

(3) MPC-based EMS@2: add Gaussian noise with a standard deviation of 2 (m/s) to real
future velocity as the predicted velocity in each receding horizon, i.e., the prediction error is
2 m/s.

4.3.2 COMPARISONUNDERBLENDEDMODE
To examine how the trained DRL-based EMS performs on different driving cycles, the test-
ing trip is utilized for generalization verification. Three MPC-based EMSs are also applied for
contrast comparisons.

The SoC trajectories of different EMSs on one testing trip are shown in Figure 4.16.Over-
all, the DDPG-based EMS and MPC-based EMSs share a similar descent rate of electricity
consumption, both avoiding the monotonous mode of EV + CS.

Detailed results are summarized in Table 4.5. The fuel economy gap of DDPG-based
EMS@A with the benchmark is about 7.86%, which is consistent with the performance on the
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Figure 4.16: SoC trajectories of Blended Mode strategies on the testing trip.

Table 4.5: Simulation results of Blended Mode strategies for the testing trip

Group Method SoCinit SoC Neng Tcal (s) Fuelc (g) Gapfuelc

1 DP 0.80 0.2642 122  115.8667 2761.4 —

2 BM@O 0.80 0.2972 243    7.8423 2847.5 3.12%

3 BM@A 0.80 0.3111  87    7.8624 2978.5 7.86%

4 MPC@0 0.80 0.2750 519 1405.0662 2954.8 7.00%

5 MPC@1 0.80 0.2831 524 1405.8996 3005.2 8.83%

6 MPC@2 0.80 0.2947 509 1405.3478 3022.4 9.45%

Notes: Neng: engine start times, Tcal: calculation time, Gapfuelc
: the gap of fuel economy with the 

DP-based EMS.

training trip. Meanwhile, the number of engine starts dramatically decreases by about 28.7%
than the benchmark, and this is even better than its performance on a long training trip.

Compared with MPC-based EMSs, the fuel economy of DDPG-based EMS@A is be-
tweenMPC-basedEMS@0 andMPC-basedEMS@1, and is better thanMPC-basedEMS@2,
but it is much more superior in avoiding frequent engine start and computational speed, because
the network forward propagation in the DDPG-based EMS only involved four times of matrix
multiplication mainly.

The cumulative frequency of engine operation efficiency is shown in Figure 4.17. Among
the three online methods, MPC-based EMS@0 has the widest range of engine efficiency distri-
bution, and the overall trend of DRL-based EMS is closest to MPC-based EMS@0. This can
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Figure 4.17: Cumulative frequency of engine operation efficiency in Blended Mode.

Table 4.6: Simulation results of CS mode for WVUCITY

Group Method SoCinit SoC Neng Tcal (s) Fuelc (g) Gapfuelc

1 DP 0.20 0.2000 18  25.5243 246.2 —

2 CS@O 0.20 0.2002 41   1.2809 252.6 2.60%

3 CS@A 0.20 0.2028 11   1.3191 268.8 9.18%

4 MPC@0 0.20 0.2007 74 248.9467 268.0 8.85%

5 MPC@1 0.20 0.2022 68 248.6890 268.4 9.02%

6 MPC@2 0.20 0.2026 67 249.7623 268.7 9.14%

Notes: Neng: engine start times, Tcal: calculation time, Gapfuelc
: the gap of fuel economy with 

the DP-based EMS.

also explain the fuel economy performances of online EMSs listed in Table 4.5 from the other
aspect.

4.3.3 COMPARISONUNDERCSMODE
The standard driving cycle of WVUCITY is used for the generalization test of CS mode, and
test results are shown in Table 4.6. The SoC trajectories of the CS@A strategy and the three
MPC strategies are relatively close to each other and vary all around the charge sustaining level.
The CS@A strategy is still relatively more advantageous in terms of calculation speed and engine
start-stop times.

Overall, the DDPG-based EMSs’ performance on the testing trip (about 8.5% fuel econ-
omy gap from the benchmark) is basically consistent with performance on training trip (about
8.8% gap), which is nearly equal to the MPC-based EMS with prediction error of 1 m/s, and
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interestingly, its number of engine start decreases by about 34% than the benchmark on testing
trip. Further, without output frequency adjustment, there is only about 2.9% fuel economy gap
from the benchmark on average, even providing about 4.7% improvement than theMPC-based
EMS with accurate prediction. Both aspects demonstrate the good robustness of the DDPG-
based EMS on unseen trips. Meanwhile, the time that one simulation step takes in DDPG-
based EMSs in the simulation environment, less than 0.001 s on average, is considerably shorter
than MPC-based EMSs.

4.4 SUMMARY
(1) Taking a PHEV as an example, this chapter explains the continuous state—continuous action
space in vehicle energy management. To address the problem of strategy learning in continuous
action space, a parameterized EMS modeling method is introduced, and the corresponding
DDPG-based energy management method is illustrated.

(2) Aiming at PHEVs with a larger battery, history trip information is integrated into
SoC trajectory planning for effective strategy learning guidance in the DDPG-based EMS.
A continuous DRL-based EMS enabled by history trip information is accordingly described,
together with the principle of parameter tuning in reward function, off-line training procedures,
and the output frequency adjustment trick.

(3) The DDPG-based EMS enabled by history trip information is systematically exam-
ined from offline training to online applications. Its learning ability, optimality, and gener-
alization are validated by comparisons with fuel economy benchmark and MPC-based real-
time EMSs. Simulation results indicate that without priori knowledge of future trips, original
DDPG-based EMSs achieve an average 3.5% gap from the benchmark, superior to the MPC-
based EMSwith accurate prediction. By applying output frequency adjustment, the engine start
frequency is effectively reduced and the average fuel economy gap is about 8.7%, comparable
to the MPC-based EMS with the prediction error of 1 m/s. The computational speed of this
continuous energy management method is still considerably fast (about 1 ms per a single step).



77

C H A P T E R 5

Learning of EMSs in
Discrete-Continuous Hybrid

Action Space
For some HEVs, depending on the system configuration, the integration degree of vehicle con-
trol strategies, and modeling methods, both discrete and continuous actions can exist in the
same action space, making it difficult to describe them monolithically by either discrete action
space or continuous action space. Taking a power-split hybrid electric bus (HEB) as an exam-
ple, this chapter will introduce how to address EMS learning problems in such hybrid action
spaces by combing the idea of action value learning and policy gradient update. Furthermore,
an energy management method considering terrain information is described, and accordingly,
the influence of the multi-source information on learning-based EMSs is discussed in terms of
fuel economy, strategy performance under specific driving scenarios, and the strategy decisions.

5.1 ENERGYCONSUMPTIONMODELOFA
POWER-SPLITHEB

TheHEBmodeling and its working modes are presented in this section, which will facilitate the
illustration of the optimal EMS search in hybrid action space.The powertrain of this power split
HEB consists of the transmission part and power units. The transmission part mainly consists
of the planetary gears (PGs) and the final drive. Power units mainly include the battery pack,
the engine and two sets of motor/generator (M/G).The configuration is illustrated in Figure 5.1
with its parameters summarized in Table 5.1. The detailed powertrain modeling is described as
follows.

TheTransmission Part
The transmission part consists of two sets of planetary gears (PGs), with the ring gear of PG1
as both the carrier of PG2 and the output shaft. The ring gear of PG2 is fixed with the shell
of transmission. The connection and disconnection of the engine are determined by clutch 1
(CL1), and those of M/G2 with the output shaft are determined by clutch 2 (CL2). Therefore,
depending on the state of clutches, four modes of operation are available, but their responses
all obey the kinetic and torque balance characteristics of planetary gears. To reduce the control-
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Figure 5.1: Configuration of the power-split HEB.

Table 5.1: Parameters of components in the HEB

Vehicle
Curb weight
Final drive ratio

11200 kg
4.88

PG1 Gear ratio of sun and ring gear 2.63

PG2 Gear ratio of sun and ring gear 2.11

Engine
Maximum power/speed
Maximum torque/speed

146 kW/2570 rpm
804 Nm/1500 rpm

M/G1 Maximum torque/speed 340 Nm/6000 rpm

M/G2 Maximum torque/speed 830 Nm/6000 rpm

Battery
Capacity
Voltage

37 Ah
657 V

oriented model’s complexity, the inertial dynamics of transmission part is not considered here.
Taking the mode with CL1 engaged and CL2 disengaged as an example, the transmission part
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can be modeled as follows:8̂̂̂̂

ˆ̂̂<̂
ˆ̂̂̂̂̂:

Taxle D Gf .Tr1 C Tc2/

!axle D !out=Gf

TM1 W Te W Tr1 D 1 W �.1C k1/ W k1

TM2 W Tout W Tc2 D 1 W �.1C k2/ W k2

!M1 C k1!out D .1C k1/!e

!M2 D .1C k2/!out

; (5.1)

where Taxle denotes the required driving torque; Gf denotes the final drive ratio; Tr1 and Tc2

denote the output torque of ring gear of PG1 and carrier of PG2, respectively; TM1 and TM2

denote the torque of M/G1 and M/G2, respectively; Te denotes the engine torque; k1 and k2

denote the gear ratios of PG1 and PG2; !axle, !out, !M1, !M2, and !e denote the speed of
driving axle, output shaft, M/G1, M/G2 and the engine, respectively.

In Equation (5.2), because Taxle and!axle represent the driving demand, which are required
by the driver as Equation (5.2) presents, there are two degrees of freedom left to determine the
transmission’s state. Therefore, we choose Te and !e as the control actions in this mode. The
control actions of the engine are bounded by T min

e � Te � T max
e and !min

e � !e � !max
e :

Taxle D

�
maacc Cmgf cos �road Cmg sin �road C

CDAfrontv
2

21:15

�
Rroll; (5.2)

where Rroll is the rolling radius (0.5 m).
Then, according to Equations (5.1) and (5.2), and the command control signal Te and !e,

the state of the transmission part can be determined.
Similarly, according to the given operation mode and control actions (Te and !e), the

desired kinetic and torque responses of M/G1 and M/G2 at different modes can be derived
from Equations (5.1) and (5.2), which are summarized in Table 5.2 and described as follows.

Mode (A) Hybrid mode with low gear: the engine is engaged with the carrier of PG1 and
M/G2 is connected to the sun gear of PG2.

Mode (B) Hybrid mode with high gear: the engine is engaged with the carrier of PG1
and M/G2 is connected to the output shaft.

Mode (C) Electric mode with low gear: the engine is shut down with the carrier of PG1
being braked; M/G2 provides the traction power or harvests braking power.

Mode (D) Electric mode with high gear: the engine is shut down with the carrier of PG1
being braked; M/G2 provides the traction power or harvests braking power.

ThePower Units
Quasi-static energy consumption models are built for power units. The engine and motors are
represented by fuel consumption or efficiency maps derived from bench experiments.The engine
fuel consumption rate Pmfuel (kg/s) is represented by a fuel consumption map with respect to
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Table 5.2: The responses of M/G1 andM/G2 according to the characteristics of planetary gears

Mode Mode A Mode B Mode C Mode D

CL1 Engaged Engaged Disengaged Disengaged

CL2 Disengaged Engaged Disengaged Engaged

TM1 –
1

1 + k1
Te –

1
1 + k1

Te
0 0

TM2 1
1 + k2

Taxle –  
k1 k1

(1 + k1)(1 + k2)
Te

Taxle –  
1 + k1

Te

1
1 + k2

Taxle
Taxle

ωM1 (1 + k1)ωe − k1ωaxle (1 + k1)ωe − k1ωaxle −k1ωaxle −k1ωaxle

ωM2 (1 + k2)ωaxle ωaxle (1 + k2)ωaxle ωaxle

800

600

400

200

0
1000 1500 2000

224g/kwh

0.95

0.
95

0.96

0.
96

0.97

0.97

0.
94

232g/kwh

200g/kw
h

200g/kwh

216g/kwh

0 2000 4000

M/G2 speed (r/min)Engine speed (r/min)

(a) Fuel consumption map (b) Efficiency map of M/G2

E
n

gi
n

e 
to

rq
ue

 (
N

m
)

M
/G

2 
to

rq
ue

 (
N

m
)

Torque boundaryMaximum torque

6000

500

0

–500

208g/kw
h

Figure 5.2: Efficiency map of power units.

engine torque and speed, as shown in Figure 5.2a. A similar method is utilized for M/G1 and
M/G2. Figure 5.2b shows the efficiency map of M/G2.

The battery will provide or gain the power ofM/G1 andM/G2 by discharging or charging,
which could be obtained from Equation (5.1). To provide reasonable SoC update, an internal
resistance model is used for battery modeling. The dynamics of the battery model is shown as
follows:

:

SoC D �
Uoc.SoC/ �

q
Uoc.SoC/2

� 4.TM1!M1�i
M1 C TM2!M2�i

M2/R.SoC/

2R.SoC/Qbatt
; (5.3)

where Uoc.SoC/ denotes the open-circuit voltage of battery, R.SoC/ denotes the internal re-
sistance, Qbatt denotes the battery capacity, �M1 and �M2 denotes the efficiency of M/G1 and
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M/G2 which are obtained from their efficiency maps, i D 1 when corresponding M/G works
as a generator, and i D �1 when M/G works as a motor.

5.2 SEARCHINGOFOPTIMALEMSs INHYBRID
ACTIONSPACEBYDDPG

5.2.1 HEBENERGYMANAGEMENTAND ITSHYBRIDACTIONSPACE
With the energy consumption model described in Section 5.1, to address the energy manage-
ment problem of this HEB, the controller needs to choose a mode, and corresponding control
signals of the engine torque and speed (at hybrid modes), simultaneously. The selection of mode
is a discrete action and the control actions of the engine are continuous actions. Accordingly,
there are four mutually exclusive discrete actions fModeA; ModeB; ModeC; ModeDg (mode
selection) and two continuous actions fTe; !eg in the action space, namely a hybrid action space
as shown in Equation (5.4):8̂<̂

:
A D fModeA; Te; !eg [ fModeB; Te; !eg [ fModeC;

Te D 0; !e D 0g [ fModeD; Te D 0; !e D 0g

a D ŒMode.t/; Te.t/; !e.t/�; a 2 A:

(5.4)

HEB energy management state variables should provide as much environmental informa-
tion as possible while being easily observable. According to vehicle longitudinal dynamics and
HEB powertrain model, we choose current velocity v and SoC as state variables for vehicle state;
the state of CL1 (clutch) is considered to reflect the engine state; terrain information, i.e., road
slope (�road), is used as a state variable for road conditions; driving requirements is represented
by state variable of vehicle acceleration (acc) that is obtained from the analytical pedal signal.
To make full utilization of our knowledge about environment dynamics, we additionally add
required driving torque Taxle, required driving power Paxle and history velocity during the past
three seconds (v�1; v�2; v�3) into state space, among which Taxle and Paxle are calculated based
on vehicle acceleration and terrain information. As a result, the state space is summarized as the
following equation:8<: S D fv; clutch; SoC; �road; acc; Taxle; Paxle; v�1; v�2; v�3g

s.t/ D Œv.t/; clutch.t/; SoC.t/; �road.t/; acc.t/; Taxle.t/;

Paxle.t/; v�1.t/; v�2.t/; v�3.t/�; s 2 S:

(5.5)

The goal of HEB energy management is to minimize fuel consumption by continuously
commanding a power allocation scheme based on the constantly changing vehicle status, road
conditions, and driving requirements. Besides, the driving demand should always be satisfied,
and the SoC should maintain near the CS level without extreme drops/increases. Hence, the
reward is defined as follows:

r D r.s; a/ D �
�
� Pmfuel C '.SoC.t/ � SoCsust/

2
�

; (5.6)
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Figure 5.3: The architecture of Actor network for hybrid action spaces.

where SoCsust D 0:6. To avoid extreme rewards, the reward signal needs to be clipped [57], and
both the clipping method and the method of using a bounded reward function are adequate
for strategy learning. The tuning principle of the weighting factors in Section 4.2.2 also applies
here. A penalty � will be implemented to reward every time starting the engine: r D r � �.

5.2.2 LEARNINGOFEMSs INHYBRIDACTIONSPACE
In deep Q-learning, the output of the DQN is the action-value of each discrete action, so that
the greedy strategy can be used to select the action with the largest action value, realizing optimal
strategy search in discrete action spaces. While in the DDPGmethod, the strategy network di-
rectly outputs the value of each continuous action and improves the strategy under the guidance
of the Critic network, realizing the strategy seeking in continuous action spaces. The compari-
son shows that the key to strategy learning in the discrete action space is action-value learning,
while the key to that in the continuous action space is finding the policy gradient. Therefore,
how to construct a parameterized policy model that can simultaneously implement action-value
learning for discrete actions and policy gradient updates for continuous actions becomes the
key to solve the policy optimization in hybrid action spaces. In this chapter, based on Matthew
Hausknecht et al.’s research concerning DRL in parameterized action space [112], an optimal
EMS learning method developed for hybrid action space is introduced as follows by combing
the idea of DQN and DDPG.

TheModeling of Parameterized EMSs with aHybrid Action Space
A DNN is used for the estimation of the EMS here, taking continuous state variables as inputs
and outputting deterministic actions, as shown in Figure 5.3. In this parameterized strategy
network �, the state vector is processed by three fully connected layers, within each of which
there are 100 ReLU activation functions; the output layer is processed by six hyperbolic tangent
activation functions to generate the values of each mode and bounded actions. The bounded
actions will be subsequently re-scaled into their intended ranges.

In contrast to the Actor network for continuous EMS, the output of the Actor network
for hybrid action spaces is divided into two parts. (1) For working mode selections, the strategy
network outputs continuous values to represent the action values of each mode, as the mode
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selection part in Figure 5.3 shows. (2) Continuous control actions are directly represented by
two continuous outputs, as the engine control part in Figure 5.3 shows. Thus, the EMS � can
be expressed by forward propagation of the strategy network �:

� D a D ŒvmodeA; vmodeB; vmodeC; vmodeD; Te; !e� D �.sj��/; (5.7)

where �� denotes all parameters of �, and ŒvmodeA; vmodeB; vmodeC; vmodeD� denotes the value
of each operation mode.

With the actor vector, control signals of the engine can be directly obtained, while the
corresponding mode, Mode.t/, is obtained by choosing the maximally valued mode as below.
Thus, it enables the simultaneous output of discrete and continuous actions:

Mode.t/ D arg max
mode

.vmodeA; vmodeB; vmodeC; vmodeD/: (5.8)

TheLearning Process
The learning theory of EMSs in hybrid action space is basically the same as that stated in Sec-
tion 4.1. With the parameterized strategy network �, the strategy learning also involves the
following key procedures.

(1) The construction of the Critic network Q parameterized by �Q. Q.s; aj�Q/ D

V.sj�V /C A.�.sj��/j�A/, where �V and �A denotes the parameters of state stream and ac-
tion stream, respectively, as shown in Figure 4.1. Replicas of AC networks are built: �T and
QT .

(2) Establishment of an experience poolD for storage of experiences and experience replay.
(3) Calculate the loss of Critic network (Equation (4.8)) and update it to minimize the

loss function.
(4) Calculate the policy gradient (Equation (4.10)) to update the Actor network �.
(5) Update the target AC networks (Equation (4.7)).
During the strategy learning, the Critic network takes all outputs of the Actor as inputs,

and there is no need to mark the selected working mode. For policy gradient computation, the
Critic network will provide gradient with respect to both the four discrete working modes and
the two continuous actions, rather than providing gradient only for continuous actions. Be-
sides, the "-greedy exploration is also combined.The exploration mechanism needs to randomly
choose the working mode first, and then, if the engine is controllable, it subsequently needs to
generate random engine speed and torque in the feasible domain.

5.3 EMSs CONSIDERINGTERRAIN INFORMATION
UNDERHYBRIDACTIONSPACE

Usually, it is difficult to obtain an optimal EMS without any priori information about the future
driving cycle, such as the velocity profiles and the terrain information which are highly correlated
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Figure 5.4: The influence of terrain on HEV energy management [113].

to the driving style, traffic conditions, weather, etc. Since the effect of velocity is quite critical
and intuitive under good driving conditions, research concerning long-term driving cycle recon-
struction and predictive energy management has gained much momentum in the last decade.
However, for commercial vehicles with high mileage and heavy load capability, the variable road
terrain will have a more noticeable impact on their energy consumption [9]. Also, timely access
to current or future terrain information will also facilitate wise energy management, leading to
more informed coordination of power distribution. For example, when a 3D road map or GPS
system anticipates that the vehicle is about to reach a long uphill segment, energy management
can recharge the battery in time to improve energy efficiency by reasonably coordinating charg-
ing, power consumption, and regenerative braking, as illustrated in Figure 5.4.

Since a major advantage of DRL-based EMSs is their enhanced ability to handle envi-
ronmental information without considering the curse of dimensionality, an energy management
method incorporating terrain information is introduced in this section for this power-split HEB,
combined with the learning-based EMS for hybrid action spaces. Meanwhile, in order to make
full use of experts’ empirical knowledge, this section also introduces a strategy pre-training stage
into the learning-based EMS to improve its training effect. The learning-based EMS consid-
ering terrain information will finally be used to validate the effectiveness of strategy learning in
hybrid action spaces on the one hand, and to provide a demonstration for analyzing the impact
of multi-source information, especially terrain information, in the learning-based EMS on the
other hand.

The application topology of the learning-based EMS considering terrain information is
shown in Figure 5.5, where the EMS for this HEB is represented by aDNN.The strategy will be
saved and downloaded into the vehicle controller after being trained by DDPG. In Figure 5.5,
the observed terrain information, together with current vehicle state, are fed into the DNN as
input state vector s(t), then DNN will output corresponding power split scheme, i.e., the action
vector a(t), to HEB’s powertrain. As the response of powertrain, this HEB will give a reward
signal r(t) and transfer to a new state at moment t+1. Here, the reward will only be collected
during strategy training period. We will explain this method from three aspects, including the
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Figure 5.5: A schematic overview of learning-based energy management considering terrain
information.

training/testing data preparation, the pre-trainingmethod, and the training of EMS considering
terrain information.

5.3.1 GENERATIONOFVELOCITY-SLOPE PROFILES
According to the design requirements of this HEB, it should climb hills with road slope of at
least 12% at the velocity of 12 km/h; the maximum velocity is 70 km/h. Two velocity profiles are
constructed by ten standard driving cycles for training and test of the proposed strategy, as shown
in Figure 5.6a. The training velocity file is sequentially constituted by CTUDC, WVUCITY,
WVUSUB, WVUINTER, IM240, HWFET, and UDDS, with a total length of 64.315 km.
Due to the limitation of maximum velocity, those with maximum velocity over 70 km/h are
regulated into a range between 0 and 70 km/h. Similarly, the test velocity profile, Figure 5.6b,
is sequentially constituted by three repetitions of WLTP Class 1 (low velocity), WLTP Class 1
(medium velocity), and JN1015, with a total length of 63.523 km.

Ideally, the data should be independent and identically distributed for machine learning
applications, but in practice this is often not the case. Therefore, researchers often choose to
extend the training set coverage or construct the dataset manually to assist relevant studies. For
EMSs considering terrain information, in order to construct the training profiles, we should
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Figure 5.7: Road slope profiles for training and test.

Table 5.3: Statistical comparison between training and test road slope-velocity profiles

Maximum Mean Value Std. Dev. Timeacc/Timedec

Training 19.44 m/s 7.65 m/s 6.49 m/s 1.22

Test 19.44 m/s 7.82 m/s 6.11 m/s 1.04

Maximum Minimum Mean Value Std. Dev.

Training 9.6% –7.7% 0.5% 3.5%

Test 8.9% –8.0% 0.1% 3.7%

collect the terrain data related to specific types of vehicles and their typical driving scenarios.
Due to limited available data resources, however, we adopt a simulation method to customize
road profiles for this HEB [114]. First, two sets of simulated arc terrains are applied for training
and test velocity profiles, then road slope profiles could be derived accordingly, as shown in
Figure 5.7.The training and test road slope-velocity profiles are compared in Table 5.3, showing
that they are statistically different and sufficient for strategy evaluation.



5.3. EMSs CONSIDERINGTERRAIN INFORMATIONUNDERHYBRIDACTIONSPACE 87

5.3.2 PRE-TRAININGMETHOD
Xavier initialization method is also adopted for AC networks in this chapter. As there are mul-
tiple working modes, and the engine speed and torque are two independent continuous control
actions, the action space becomes larger. This makes it necessary to accumulate more samples
during stochastic exploration to promote strategy learning. Considering that the vehicle model
and the training profile are known before training, we are able to obtain the global optimal EMS
on the training profile. Therefore, it is potentially worthwhile to combine this prior knowledge
of the global optimal strategy with the learning ability of DRL-based EMSs, so that the EMS
can start learning on the basis of the empirical experience rather than from scratch. To imple-
ment such idea, this section introduces a pre-training stage in DRL-based energy management
methods.

In practice, we found that pre-training the Critic network with optimal experience sam-
ples, i.e., the state transition samples optimized by DP, is helpful for convergent strategy learn-
ing. Detailed pre-training methods are described as below.

(1) The CTUDC related fraction of the training profile is picked for data generation. DP
is applied on this fraction to derive the optimal state transition experiences. The mode selection
part of the action vector is filled by one-hot encoding. The entire training profile is not utilized
for data generation, which is because the training dataset may be quite large or being constantly
updated. Selecting a short profile for pre-training would be more realistic.

(2) Optimal samples are replicated to fill in the replay memory D.
(3) Sample random minibatches of experiences from D and calculate the loss of Critic

network.
(4) Update the Critic network and the target Critic network by batch gradient descent,

with the parameters of the two Actor networks frozen.
(5) Repeat from step 3 until the Critic gets converged, for example, the moving average

of the loss function gets smaller than 0.01.

5.3.3 TRAININGALGORITHM
Algorithm 5.4 shows the pseudocode of the DRL-based EMS with terrain information. Com-
bined with Section 5.2, the overall training process is outlined here in five function parts, which
are not isolated but interactive with each other, as shown in Figure 5.8.

(1) Initialization. This includes the initialization of AC networks and the normalization
of state data. Velocity, acceleration, road slope, required power and torque are normalized by Z-
score normalization method. The respective mean value and standard deviation should be saved
for normalization during testing. State variable of SoC and the clutch will be directly fed into
the networks.

(2) Pre-training. The Critic networks are pre-trained after the initialization stage.
(3) Experience replay, which is similar to that adopted in Section 4.2. Considering the

long training profile, the size of experience pool is set as 106. After the pre-training stage, the
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Figure 5.8: The training of a DRL-based EMS with terrain information.

experience pool has been full already. Thus, when a new sample comes during the next strategy
learning stage, the oldest sample in D will be discarded and replaced by the new one.

(4) Strategy learning. It mainly involves loss function calculation of the Critic network,
policy gradient calculation, network update, exploration, etc. In this chapter, we anneal " from
1 to 0.1 over the first 45 update rounds.

(5) Action response. This function part is about the simulation of HEB environment dy-
namics and always interacts with strategy learning and experience replay.

5.4 COMPARATIVECASEANALYSIS

5.4.1 DEVELOPMENTOFCONTRAST STRATEGIES
The AC networks are trained on the training profile and the initial SoC value at the beginning
of each update round is randomly selected from Œ0:5; 0:7� to enhance generalization. Then, to
examine the learning and optimization ability of strategy learning in the hybrid action space,
four contrast EMSs are described briefly as follows.
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Algorithm 5.4The training of a DRL-based EMS with terrain information.

Initialize AC networks by Xavier uniform initializer; initialize target AC networks; initialize
experience pool D; initialize exploration rate " D 1; maximum iteration number Niteration; time
length of the training driving cycle Ttrain; size of minibatch Minibatch D 32.

1: Generate optimal experience samples by DP, initialize replay memory D, and pre-train the
Critic network

2: for IterationRound D 1 W Niteration do
3: Observe initial state s.0/

4: for t D 0 W .Ttrain � 1/ do
5: Action selection in hybrid action space: select action by random generation a.t/ D

R.s.t// (with probability "), otherwise use the current policy a.t/ D �.sj��/ (with
probability 1 � ") and obtain the engine control signals and the working mode
Mode.t/ D arg max

mode
.vmodeA; vmodeB; vmodeC; vmodeD/

6: Execute action a.t/ by calling the HEB model
7: Observe reward r.s.t/; a.t// and the next state s.t C 1/

8: Discard the oldest sample in D, store the new experience sample e.t/ D

.s.t/; a.t/; r.s.t/; a.t//; s.t C 1//;
9: Sample a random minibatch of experience samples from D
10: Update Critic network to minimize TD error: �Q D �Q C ˛lr�QLQ

11: Update Actor network to increase the estimated Q-value: �� D �� C ˛lr���

12: Update the target AC networks by �
Q
T D �

Q
T C �.�Q � �

Q
T /; �

�
T D �

�
T C �.�� � �

�
T /

13: Decrease the exploration possibility
14: end for
15: end for
16: Output the final parameterized Actor network � as the trained � D �.sj��/

TheBaseline: DP-Based EMSs
As described in Section 3.4.1, DP-based EMSs will serve as the fuel economy benchmark. The
action space contains four discrete actions for mode selection and two engine control actions
which are discretized into 100 grids, respectively.

TheRule-Based EMS
With limited information, the rule-based EMS can respond quickly and is commonly used in
HEBs. So, the required driving torque, brake requirement, and SoC are considered to develop
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a rule-based EMS as an online contrast strategy (the electric mode and hybrid mode with low
gears are considered here).

Mode (A) When the SoC of battery is enough for driving requirement (10% more than
sustaining level): if M/G2 could satisfy the required driving torque, pure electric mode is the
priority, i.e., the clutch is disengaged and M/G2 works as a traction motor; if M/G2 could not
satisfy the required driving torque, the engine will work in its optimal area as much as possible
with clutch engaged, and the torque gap with required driving torque is compensated byM/G2.
This mode will be maintained until the condition of mode B is met.

Mode (B) When the SoC of battery is 10% below the sustaining level: with the required
driving torque satisfied, the engine operating point is shifted approaching to upper boundaries of
optimal areas by delivering part of its energy to the battery via M/G1. This mode will maintain
until the condition of mode A is met.

Mode (C) During brake, the battery pack will harvest energy by regenerative braking
when SoC < SoCmax. Here, the maximum value (SoCmax) is set as 90%.

TheContinuous DRL-Based EMS
The continuous DRL-based EMS (CDRL-based EMS) is derived utilizing the same DDPG
method and trained on the same training profile as elaborated in the last section. However, to
examine the influence of mode selection on learning-based EMSs, its action space only consists
of two continuous engine control actions. The mode selection is conducted by rules: only when
braking, the electric mode with low gear is chosen, otherwise, the hybrid mode with low gear is
chosen; the CL1 is only engaged when the engine is on.

TheElementary DRL-Based EMSWithout Terrain Information
Similar to the CDRL-based method, an elementary DRL-based EMS (EDRL-based EMS)
is derived but without the inclusion of terrain information in its state space. Still, only two
continuous actions for the engine are considered here, with the mode selection conducted by
rules. In addition, due to the absence of terrain information, road slope is also not considered
when calculating Taxle and Paxle for the state vector.

5.4.2 LEARNINGPROCESS INHYBRIDACTIONSPACE
The learning process of the DRL-based EMS with terrain information and CDRL-based EMS
are compared in Figure 5.9. Generally, their mean reward keeps rising before 35 update rounds,
then the variation trend gets steady until termination; correspondingly, the final SoC after each
update round over one training profile gets stable gradually, even with different initial SoC val-
ues. The final Actor network is saved as the trained EMS.

From Figure 5.9, the mean reward of the DRL-based method is much lower than the
CDRL-based one in the beginning period. This is because of the introduction of multi-mode
selection into the action space. At the beginning period, as all modes are selected randomly, there
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Figure 5.9: Visualization of the strategy learning process.

are more chances of operating at electric modes compared to the CDRL-based EMS, leading to
more electricity consumption and lower final SoC level. Accordingly, less reward is received. But
the agent rapidly learns to how to select mode efficiently, bringing even higher reward return
than CDRL-based EMS later.

On the other hand, due to the random factors during training, such as the exploration
and the random sampling, the convergence of final SoC values may vary and drift slightly from
the desired sustaining level. The agent learns to achieve higher reward returns over the entire
training profile by sacrificing the consistency in the final SoC state. It can be explained by the
definition of reward function: without any future driving information, the instant reward is only
determined by current fuel consumption and SoC variation value, and there is no constraint on
final SoC state.

In Figure 5.9, the plain DRL-based EMS refers to a DRL-based strategy trained without
pre-training and two-stream architecture in the Critic network. To make the figure concise,
only its mean reward is depicted. The plain DRL-based EMS learns slower and gets relatively
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Table 5.4: Results comparison for optimization validation

Group Method SoCinit SoC Neng Tcal (s) Fuelc (g) Gapfuelc

1

DP

DRL

CDRL

EDRL

Rule

0.60

0.60

0.60

0.60

0.60

0.6000

0.6184

0.6237

0.6408

0.7286

174

 39

 49

 55

 23

118.9154

 7.5882

 6.9827

 6.9064

 4.1108

5399.7

5722.3

5839.5

5927.0

6359.6

—

 5.97%

 8.14%

 9.77%

17.78%

2

DP

DRL

CDRL

EDRL

Rule

0.65

0.65

0.65

0.65

0.65

0.6000

0.6184

0.6237

0.6409

0.7288

165

 39

 47

 54

 22

119.0049

7.5771

7.0151

7.0268

4.2416

5174.2

5478.8

5592.9

5681.7

6115.4

—

 5.89%

 8.09%

 9.81%

18.19%

3

DP

DRL

CDRL

EDRL

Rule

0.55

0.55

0.55

0.55

0.55

0.6000

0.6186

0.6237

0.6408

0.7286

179

 40

 50

 58

 23

118.5071

7.5601

7.0053

7.9951

4.1603

5627.6

5985.7

6085.5

6176.9

6596.2

—

 6.36%

 8.14%

 9.76%

17.21%

less reward, indicating the combination of pre-training and the two-stream Critic network are
beneficial for efficient strategy learning.

For this training profile of 64.315 km, it takes approximately one hour for the DRL-based
EMS to complete 55 update rounds on a computer with a processor of i7-2600CPU@ 3.4GHz.
Compared with previous research about discrete reinforcement learning-based EMSs, even with
larger state and hybrid action spaces, this method still owns a distinct advantage in training and
convergence rate.

5.4.3 OPTIMIZATIONEVALUATIONCONSIDERINGTERRAIN
INFORMATION

In this section, we will examine the optimization performance of the derived DRL-based EMS
on the training profile. The DP-based EMS and rule-based EMS are implemented to serve as
benchmarking strategy and online strategy, respectively.The results are summarized in Table 5.4,
where there are three groups of simulation with different initial SoC.

FromTable 5.4, the DRL-based EMS could narrow the gap with the DP-based EMS ap-
parently with less engine start times, demonstrating that the issue of avoiding frequent engine
starts has been properly addressed during the learning of strategy by implementing correspond-
ing penalty. Besides, compared with the rule-based EMS, the DRL-based EMS also displays
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quite impressive computation speed (about 0.9 ms per simulation step) in the simulation envi-
ronment.

Focusing on Group No.1, the optimization ability is further discussed from the following
three aspects.

ThePerformance in EngineOperating Efficiency
The engine operation points of the DP-based, CDRL-based, and DRL-based EMSs with ter-
rain information are depicted in Figure 5.10, together with their efficiency distribution. Their
average fuel consumption rates are 194.10 g/kWh, 197.07 g/kWh, and 194.04 g/kWh, respec-
tively. However, the engine operation points of both DRL-based and CDRL-based EMSs are
more likely to appear around the upper torque boundary. Regarding this phenomenon, the pos-
sible reason is that the hyperbolic tangent activation function is chosen for the output layer of
Actor network to output bounded actions, but the update will be slowed down severely when
the hyperbolic tangent function gets saturated. But overall, we can still see that the learning is
efficient with the presence of terrain information to make the engine operate at more efficient
areas.

On the other hand, compared with the CDRL-based EMS, the proposed DRL-based
EMS additionally takes the powertrain mode selection into consideration during strategy learn-
ing, its final strategy exhibiting a more similar distribution trend to the baseline in terms of
fuel efficiency from Figure 5.10b. This also verifies the effectiveness of this energy management
method in hybrid action space with multiple discrete actions.
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Table 5.5: Statistical characteristics of powertrain mode selection

Name Method Mode A Mode B Mode C Mode D

Average v (m/s)
DP

DRL

9.0

9.4

14.1

16.0

4.1

4.1

9.8

13.9

Average aacc (m/s2)
DP

DRL

0.26

0.51

0.08

0.08

–0.06

–0.05

–0.08

–0.02

Average θroad (%)
DP

DRL

2.0

3.0

1.6

2.4

0.4

0.1

–2.1

–1.3

Average Taxle (Nm)
DP

DRL

619.0

1018.6

408.9

504.4

33.9

33.2

–191.6

–29.9

ThePerformance in theMode Selection
Although the engine operation is decoupled with driving conditions under hybrid modes, the
physical output torque and speed boundaries of power units may still affect feasible control so-
lutions for the engine under different hybrid modes. Therefore, the DRL-based and baseline
strategies’ performance in mode selection is further compared and discussed. The statistical re-
sults of powertrain operation modes are depicted in Figure 5.11. Generally, to harvest more
electricity power over the undulating terrain, both strategies are more inclined to choose Mode
C (the electric mode with low gear) and the total time operating at hybrid modes is less. Besides,
due to the larger output power of the engine under DRL-based strategy from Figure 5.11, its
hybrid modes (Mode A and B) take a less portion compared with the baseline.

On the other hand, the average velocity, average acceleration, average slope, and average
required driving torque Taxle of the two strategies under different modes are summarized in
Table 5.5. It shows that both strategies share similar statistical characteristics: Mode A (hybrid
mode with low gear) is often adopted to meet driving conditions with larger acceleration and
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Figure 5.12: SoC trajectories of three strategies on one training profile.

required driving torque, while the circumstance forMode B (hybrid mode with high gear) is just
the opposite; the average statistical values of Mode C and D (electric modes) are less compared
with hybridmodes, which is due to themutual compensation of electric drive and brake recovery.
From the above, in comparison with the baseline strategy, the DRL-based EMS indeed learns
some rules of efficient mode switch in discrete parts of the hybrid action space.

ThePerformance at Different Terrains
Here, specific scenarios are chosen to examine why including terrain information could pro-
mote fuel economy. The SoC trajectories of the DRL-based EMS and contrast strategies are
shown in Figure 5.12. As the dashed area A shows, when SoC is lower than the sustaining level,
the rule-based EMS decides to charge the battery immediately and as a result, it does not take
the advantage of following downhill terrains; while for the DRL-based EMS, it performs more
similar with the DP-based strategy, driving using more electricity at first for later energy har-
vesting at downhill terrains. At uphill terrains, the dashed area B shows that the DRL-based
EMS could reasonably coordinate power split schemes between the engine and the battery to
avoid the dramatical drop of SoC. Overall, even with undulating terrains, the fluctuation of the
DRL-based EMS’s SoC trajectory is much smaller, which is helpful for the maintenance of
battery health.
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Table 5.6: Results comparison for generalization validation

Group Method SoCinit SoC Neng Tcal (s) Fuelc (g) Gapfuelc

1

DP

DRL

CDRL

EDRL

Rule

0.60

0.60

0.60

0.60

0.60

0.6000

0.5898

0.5770

0.6010

0.6891

174

 40

 43

 58

 21

118.2133

7.5867

7.1660

7.1731

4.0442

5525.3

5894.8

5954.6

6005.6

6400.2

—

 6.69%

 7.77%

 8.69%

15.83%

2

DP

DRL

CDRL

EDRL

Rule

0.60

0.60

0.60

0.60

0.60

0.6000

0.6260

0.6278

0.6416

0.7417

 80

 23

 19

 39

 25

115.9783

7.5462

7.1858

7.0264

3.8904

4835.2

5162.5

5169.8

5379.4

5538.4

—

 6.77%

 6.92%

11.25%

14.54%

3

DP

DRL

CDRL

EDRL

Rule

0.60

0.60

0.60

0.60

0.60

0.6000

0.6104

0.6091

0.6152

0.7167

135

 29

 30

 48

 23

116.0276

7.5452

7.1972

7.0284

3.9373

4881.0

5202.2

5326.5

5403.1

5714.1

—

 6.58%

 9.13%

10.70%

17.07%

In summary, the DRL-based EMS with terrain information shows its ability to promote
fuel economy by optimizing multiple mode selections and energy allocations simultaneously in
a hybrid action space.

5.4.4 GENERALIZATIONEVALUATION
For learning-based controls, it is essential to make sure they are robust in diverse environments.
Thus, the trained strategy is further examined on test profiles, which were partly or entirely
unseen during strategy training. The experiment results are summarized in Table 5.6 (CDRL-
based and EDRL-based EMSs are discussed in the next section). In a generalization test, the
average fuel economy gap of the DRL-based EMS with benchmarking strategy is about 6.68%,
which is basically consistent with its performance on optimization examinations (6.07%). Still,
the advantage of the proposed method in both computation rate and avoiding frequent engine
starts excels while maintaining an acceptable level of fuel economy.

5.4.5 INFLUENCEOFTERRAIN INFORMATION
Asmany factors matter to power split scheme decisions at different states, it could be incomplete
or even unbalanced to evaluate the influence of terrain information exclusively by certain scenar-
ios. Thus, its influence on this learning-based method is further investigated from macroscopic
perspectives.
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Figure 5.13: Comparison of fuel-saving potential compared with the baseline.

The Influence on Fuel Economy
In this section, to reduce the influence frommode selections, only CDRL-based, EDRL-based,
and rule-based EMSs are involved, and the DP-based EMS still serves as the baseline strategy.
Their simulation results on six different profiles and their gaps in fuel economy with the base-
line are also summarized in Tables 5.4 and 5.6. Accordingly, over the six profiles, the average
gaps of CDRL-based, EDRL-based, and rule-based EMSs with the baseline, are calculated
to be 8.03%, 10.00%, and 16.77%, respectively. Assuming the baseline owns 100% fuel-saving
potential, the fuel-saving potential of other EMSs are evaluated by subtracting their average
gaps from the fuel-saving level of the baseline (100%), as shown in Figure 5.13. The compari-
son indicates that considering terrain information in the derivation of this learning-based EMS
could promote its fuel-saving potential by approximately 2% on average. Further, given the fact
that the average annual operating mileage of commercial vehicles in North American is around
250,000 km [9], including terrain information in energy management will be much more bene-
ficial for energy saving of hybrid buses and other commercial vehicles operating for a long time
with high mileage and heavy loads.

The Influence onDecisionMaking
To understand the role of terrain information in deciding on a power split scheme, we will try
to interpret the trained Actor network (the parameterized EMS) in this section. As explaining
neural networks is difficult, decision tree models provide a direction to understand neural net-
works by analyzing the feature importance of different state variables. Because of their reliance
on hierarchical decisions, the feature importance of single state variable can be estimated ac-
cording to how often it is used in split points of a decision tree [115]. Therefore, the method
in [115] is adopted for EMS interpretation; specifically, the package for gradient boosted regres-
sion tree (GBRT) in scikit-learn is used. All state transition data generated by the DRL-based
EMS during simulations on a training profile are gathered then fed to train a decision tree.
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Figure 5.14: The feature importance of state variables for DRL-based EMS.

The relative importance of state variables in state space S to the power split scheme is
shown in Figure 5.14. The strategy learned to put more emphasis on the SoC when making a
decision, since its variation affected the reward directly during training. Terrain information also
plays a crucial part in decisions, along with other state variables related to driving requirements,
proving the benefit of considering terrain information from an aspect of data analysis.

On the other hand, due to the representation of required driving power and torque are
more directly relevant to energy management, their importance appears higher than that of ve-
locity and acceleration. As for the state of CL1, when the engine is on, it will keep unchanged
regardless of varying engine power, while the change of clutch state matters to reward partic-
ularly when there is a need to start the engine. This may account for the lowest importance of
clutch state derived from entire simulation data by GBRT. Overall, this result demonstrates that
this learning method could provide an effective way to learn some knowledge of near-optimal
EMS in larger state and action spaces.

5.5 SUMMARY
(1) The hybrid action space in energy management is illustrated by a case of power-split HEB.
Based on a new parameterized strategy modeling approach, the corresponding energy manage-
ment method is developed for this power-split HEB. This method is capable of searching the
optimal EMS in a hybrid action space, realizing simultaneous optimization of the discrete mode
selection and continuous energy allocations.

(2) A pre-training stage, which is developed to leverage the empirical knowledge and ac-
celerate the training process, is also integrated into a DRL-based energy management method
considering terrain information. The velocity-slope profile generation and strategy training al-
gorithms are depicted for such EMSs. Comparative simulations are also conducted to examine
the performance of the learning-based EMSs.
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(3)The value of terrain information in learning-based EMSs is discussed in terms of three

aspects, including the strategy performance in specific scenarios, fuel economy performance, and
hierarchical decision extraction and interpretation of the strategy network. This potentially pro-
vides a reference for analyzing the impact of multi-source information fusion on strategy learn-
ing.The results show that incorporating the terrain information in DRL-based EMSs promoted
the HEB’s fuel economy by approximately 2%.
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AnOnline Integration Scheme
for DRL-Based EMSs

As a new type of intelligent control methods, DRL requires massive exploration data samples,
but due to the high cost of trial and error in real physical systems, most of the research on DRL
is carried out based on simulators. The previous chapters also focus on the implementation and
optimization of learning-based EMSs in a simulation environment. Currently, the developed
vehicle control algorithms still need further assessments with the deployment in real vehicle
controllers. Three aspects deserve more attention: (1) whether the control strategy development
method is compatible with the mainstream development process of the vehicle control strategy;
(2) whether common onboard controllers can meet the computing resource requirements of the
strategy; and (3) whether the control strategy could perform consistently in real vehicle systems.
Therefore, a hardware-in-the-loop (HIL) demonstration for the DRL-based EMS is described
in this chapter. Because all DRL-based EMSs described in this book are represented by DNNs,
they share the same hardware deployment procedure. The DRL-based EMS in Chapter 3 is
utilized here for the illustration.

6.1 RECONSTRUCTIONOFPARAMETERIZEDEMSs IN
MATLAB/SIMULINK

6.1.1 EXTRACTIONOFPARAMETERIZEDEMSs
In machine learning, to learn valuable data knowledge from large and cumbersome data, we
usually use networks of greater complexity or size during training without payingmuch attention
to their real-time performance. However, in the application stage, limited by the computing
resources on deployment platforms, whether they have good real-time performance will be one
of the key factors for algorithm evaluation. Taking a controller of Freescale MPC5644A as
an example, we find that the strategy network we obtained in Chapter 3 (three hidden layers
with 100 neurons per layer) could slow the single-step computation time of this VCU to about
500ms or worse.Therefore, a strategy extraction method is introduced to facilitate the successful
deployment of DRL-based EMSs on common controllers.

In practice, when the number of neurons in each hidden layer is reduced to 20, the con-
troller couldmeet the requirement of 50ms single-step computation, however, if a small network
was directly used for policy training, it was prone to underfitting and failed to achieve the de-
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Figure 6.1: Illustration of the strategy extraction method.

sired effect. Therefore, referring to the knowledge distillation method [78], a smaller network is
adopted for strategy extraction. Different from the knowledge distillation method in [78], as the
EMSs are deterministic strategies, there are no soft labels like the action probability; hence, the
hard labels of state transition data are directly used to train the surrogate network for strategy
knowledge extraction. The overall extraction idea is illustrated in Figure 6.1. Taking the �BM as
an example, the extraction method is described as follows.

First, a smaller strategy network is built, namely the Net-Student �Net�S .sj�Net�S /. The
original strategy network of �BM.sj��/ will server as the Net-Teacher, �Net�T .s j�Net�T /. The
input layer, output layer, number of hidden layers, and activation functions of the Net-Student
are aligned with the Net-Teacher. However, the number of neurons per hidden layer is reduced
to 20, i.e., the Net-Student has fewer parameters and takes up less memory in VCUs.

Next, the collected state transition data from Net-Teacher will be used to train the Net-
Student. The training goal is to minimize the output difference between the two strategy net-
works, resulting in the loss function as follows:

Lcomp.�Net�S / D
1

2
Œ�Net�T .sj�Net�T / � �Net�S .sj�Net�S /�2: (6.1)

Compared to the training of Net-Teacher, the training of Net-Student is more efficient,
thus it would be beneficial to train it by larger and more comprehensive dataset in practice.
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Figure 6.2: The loss function during strategy extraction.

Table 6.1: The output difference between the extracted and original EMSs

Driving Cycle MSE (kW) Driving Cycle MSE (kW)

CTUDC×18 0.0843 WVUINTER 0.5655

CTUDC 0.0973 WLTP Class2 0.2632

WVUCITY 0.0756 JN1015 0.1100

WVUSUB 0.1689 Mixed 0.2137

Here, the long training profile (106.157 km) in Chapter 3 is used for state transition generation
by Net-Teacher and the training of Net-Student.

To visualize the strategy extraction, Figure 6.2 shows the mean square error between the
output of Net-Teacher and Net-Student during training. Since the data generated by Net-
Teacher is more regular, a smaller Net-Student can still quickly distill useful knowledge of en-
ergy management by learning the state-action mapping relationship. To avoid overfitting, the
test profile in Chapter 3 is simply used here as the validation dataset. The best Net-Student on
validation dataset is saved as the extracted EMS, �comp D �Net�S .sj�Net�S /.

The difference of Net-Teacher and Net-Student on the training profile and the testing
profile is summarized in Table 6.1. We can see that their difference is about 0.2 kW, which is
around 1% different considering the interval of control action ıPeng. Intuitively, the extracted
strategy is almost the same as the original EMS. On the other hand, the Net-Student is trained
to intimate the original EMS, while in actual applications, the relative error of the two strategies
will be further narrowed under the constraint of output frequency adjustment.

Given an initial SoC of 0.8, the performance of the extracted EMSwith output frequency
adjustment on CTUDC and WLTP Class2 is shown in Figure 6.3. Correspondingly, their fuel
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Figure 6.3: SoC trajectories of the extracted and original EMSs.

economy performance is about 0.6% and 1.04% different from that of the original EMS.There-
fore, we could say that this strategy extraction method works well for the DRL-based EMS.

6.1.2 RECONSTRUCTION INMATLAB/SIMULINK
As the DRL-based EMS is usually trained and extracted in the Python environment, we will
rebuild it in Matlab/Simulink environment to facilitate HIL-related experiments. Also, consid-
ering the fact that most VCU development works are based on Matlab/Simulink currently, it
would be more convenient to transfer this DRL-based EMS in Matlab/Simulink environment.

Taking the extracted �BM as an example, the function module in Simulink makes it easy to
rebuild the parameterized DRL-based EMS by matrix multiplication, as shown in Figure 6.4.
The input data includes the normalized state vector and the network weights obtained from the
current workspace. The output is the desired increment/decrement value of the engine power.

Then, to accomplish the HIL test, the driver model, the strategy model, and the vehicle
model are necessary, as shown in Figure 6.5. Specially, the strategy model can be further divided
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into four parts, including the pre-processing of state vector and the strategy parameter input,
parameterized EMS, output frequency adjustment, and post-processing of the control action,
which calculates the desired engine power and constraints the control signals.

6.2 EVALUATIONBYHILTEST
The above simulation model in Figure 6.5 will be separated into three independent nodes. The
driver model node and the vehicle model node are imported into the CANoe software, while
the strategy model is imported into the real controller, together with its parameters. The real
controller is connected and communicated with the CANoe environment by aHIL test platform
based on the MotoTron system. The strategy deployment on the real controller is referred to as
the real-time DRL-based EMS.

Taking the CTUDC as the goal, the driver model tracks the target velocity in real time,
and the actual velocity is shown in Figure 6.6. In order to follow the target velocity more closely,
the driver model appears to be a bit more aggressive, and its maximum acceleration is about
1.12 m/s2, which is slightly larger than that of the CTUDC (0.91 m/s2). This is also consistent
with the actual driving scenario, but leads to an increase in the overall energy consumption.

In the HIL test, the SoC trajectories of the DRL-based EMS enabled by history trip
information are depicted in Figure 6.7, and Table 6.2 compares the performance of the real-
time DRL-based EMS and the baseline. Comparing the strategy test results in the simulation
environment (Figure 4.10 and Table 4.2), the real-time strategy can still meet our expectation:
the electricity and fuel consumption are well-balanced at the blended mode, and the electricity
remains stable at the CS mode. With errors from the actual driving cycle and the actual CAN
bus communication, the fuel economy of the real-time strategy under BM and CS mode differs
from the simulated results by only about 0.47% and 0.27%, respectively.This indicates that there
is little influence on DRL-based EMS when it is migrated from the simulated environment to
the hardware system (the VCU).
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Table 6.2: Fuel economy of the real-time EMS from HIL test

Group Method SoCinit SoC Neng Fuelc (g) Gapfuelc

1
DP-based EMS

Real-time EMS (BM@A)

0.8000

0.8000

0.7527

0.7608

 9

 6

136.1

147.1

—

8.08%

2
DP-based EMS

Real-time EMS (CS@A)

0.2000

0.2000

0.2000

0.2083

16

10

240.0

260.8

—

8.67%

On the other hand, because the real-time strategy is extracted from the original EMS
with minimizing their output difference as the goal and the reconstructed real-time strategy in
Matlab/Simulink is exactly the same as the extracted strategy, theoretically, the output of the
real-time strategy should be close to that of the original strategy when given the same input
state vector. Therefore, the obtained HIL test results are also as anticipated.
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6.3 SUMMARY
Aiming at parameterized EMS based on neural networks, an EMS transfer method is intro-
duced for the deployment on common VCUs, including the strategy extraction based on the
knowledge distillation, and the strategy reconstruction in Matlab/Simulink. This method pro-
vides a way to ensure the compatibility between the development of learning-based EMSs with
the current mainstream development process of the vehicle control strategies. A HIL test plat-
form is utilized to examine the strategy transfer method and the real-time performance of the
DRL-based EMS. The results demonstrates that the DRL-based EMS can work well on com-
mon controllers, as long as the strategy network are compressed to an appropriate size for the
hardware.
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Conclusions
In this book, the DRL-based energy management methods are discussed for HEVs. As a kind
of learning-based EMSs, the successful application of DRL in HEV energy management re-
quires stable policy improvement during training and robust online performance. To enhance
the application effect on different powertrain topologies, energy management problems, and
application scenarios, several DRL-based EMSs, ranging from value-based strategy learning to
policy gradient-based learning, and a general strategy transfer method for parameterized EMSs
are described from Sections 3–6. Hopefully, this research work could provide some useful clues
and basic algorithmic frameworks for future study on more complex and intelligent vehicle con-
trol methods with the incorporation of multi-source sensory information.

The research on deep learning and DRL has gained great momentum in the past decade
and is still evolving rapidly, which would constantly bring fresh ideas to learning-based energy
management inHEVs.Meanwhile, based on the current work, attention regarding the following
aspects may also be needed in the future.

1. Comprehensive control-oriented HEV modeling method that considers the transient
characteristics of power components and runs fast. It also plays a key role in bridging
the gap between strategy simulation and strategy deployment on real hybrid powertrain
systems. The influence of realistic factors on learning-based EMSs is also worthy of at-
tention, such as the synchronization of communication signals, sensor noise, vehicle state
estimation errors, etc. This is also a common challenge in the field of machine learning.

2. The transfer learning of parameterized EMSs across different types of HEVs and driving
styles. As learning-based EMSs require enormous training data, this effort will further
increase the portability and development cost of strategy learning.

3. Cooperative and online learning of EMSs. The parameterized EMSs described in this
book were trained first and then applied without online update of the parameters. How-
ever, if the research cases are extended to a connected environment where massive real-
time driving data could be collected, the issue of data diversity will not be the constraint
of online strategy learning in the real world. Furthermore, combined with asynchronous
or multi-agent DRL, the possibility of collaborative learning for energy-efficient control
of a group of HEVs could be explored under this scenario as well.
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